E92M3
- 64
- 0
Homework Statement
A 2D rotating coordinate system (x,y) is defined by:
x=Xcos\omega t+Ysin \omega t
y=-Xsin\omega t+Y cos \omega t
Where (X,Y) is the coordinate of the inertial frame and omega is some angular frequency. What is the force required to keep a mass m moving in a "straight" line (x,y)=(ut,0) where u is a constant?
Homework Equations
F=m\frac{d^2x}{dt^2}
and the given equations of the new coordinates.
The Attempt at a Solution
Let me take the derivative of the given equations twice:
\frac{d(Xcos\omega t+Ysin \omega t)}{dt}=-X\omega sin \omega t + Y \omega cos \omega t=\omega y
\frac{d^2x}{dt^2}=\omega \frac{dy}{dt}=\omega \frac{d(-Xsin\omega t+Y cos \omega t)}{dt}= \omega \left ( -\omega X cos \omega t -\omega Y sin \omega t \right)= -\omega^2 x
Similarly:
\frac{dy}{dt}=-\omega x
\frac{d^2y}{dt^2}=-\omega^2 y
So we have:
F_x=-m \omega^2x
F_y=-m \omega^2y
Um... is this some kind of a spring force?
Last edited: