Jhenrique
- 676
- 4
Using http://www.mymathforum.com/download/file.php?id=6171 and writing the relationships:
\vec{\rho}\;'=R^{-1}(\phi)\vec{\rho}
\begin{bmatrix} r'\\ z'\\ \end{bmatrix} = \begin{bmatrix} cos(\phi) & sin(\phi)\\ -sin(\phi) & cos(\phi)\\ \end{bmatrix} \begin{bmatrix} r\\ z\\ \end{bmatrix}
and
\vec{r}\;'=R(\theta)\vec{r}
\begin{bmatrix} x'\\ y'\\ \end{bmatrix} = \begin{bmatrix} cos(\theta) & -sin(\theta)\\ sin(\theta) & cos(\theta)\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix}
and that ##\vec{r}=\vec{x}+\vec{y}## and ##\vec{\rho}=\vec{r}+\vec{z}##.
Joinning all these relations, I ask: is possible to join theses two rotations in one unique equation?
\vec{\rho}\;'=R^{-1}(\phi)\vec{\rho}
\begin{bmatrix} r'\\ z'\\ \end{bmatrix} = \begin{bmatrix} cos(\phi) & sin(\phi)\\ -sin(\phi) & cos(\phi)\\ \end{bmatrix} \begin{bmatrix} r\\ z\\ \end{bmatrix}
and
\vec{r}\;'=R(\theta)\vec{r}
\begin{bmatrix} x'\\ y'\\ \end{bmatrix} = \begin{bmatrix} cos(\theta) & -sin(\theta)\\ sin(\theta) & cos(\theta)\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix}
and that ##\vec{r}=\vec{x}+\vec{y}## and ##\vec{\rho}=\vec{r}+\vec{z}##.
Joinning all these relations, I ask: is possible to join theses two rotations in one unique equation?