1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

S.E in cylinder - Bessel's equation

  1. May 14, 2005 #1
    Im trying to solve the following problem:

    A particle of mass m is contained in a right circular cylinder(pillbox) of radius R and height H. The particle is described by a wave function satisfying the Schrödinger wave equation

    [tex]
    -\frac{\hbar^2}{2m}\nabla^2\Psi(r,\phi,z) = E\Psi(r,\phi,z)
    [/tex]

    and the condition that the wave function go to zero over the surface of the pillbox. Find the lowest(zero point) permitted energy.

    Solution:

    First i express the laplace operator in cylindrical coordinates and use separation of variables. This gives three differential equations.

    [tex]
    \frac {d^2Z(z)} {dz^2} = \lambda^2z
    [/tex]

    [tex]
    \frac {d^2\Phi(\phi)} {d\phi^2} = -m^2\Phi
    [/tex]

    [tex]
    r\frac {d} {dr}(r\frac {dR(r)} {dr}) + (\mu^2r^2-m^2)R(r) = 0
    [/tex]

    with

    [tex]
    k^2 + \lambda^2 = \mu^2
    [/tex]

    and [tex]\lambda, \mu, m [/tex] are the separation constants

    The periodicity and the boundary conditions Z(0)=0 and Z(H)=0 gives the solutions of the first two D.E are

    [tex]
    Z(z) = C_1sinh(\pi lz/H)
    [/tex]
    [tex]
    \Phi(\phi) = C_2exp(im\phi)
    [/tex]

    where l is an integer and m can take on the positive and negative integers and zero.

    The third differential equation is bessels equation and because R(0) should be finite the solutions are bessels functions of the first kind.

    The wave function is then...i think.

    [tex]
    \Psi(r,\phi,z) = const.*J_m(\sqrt{\frac{2mE}{\hbar^2}}r)exp(im\phi)sinh(\pi lz/H)
    [/tex]

    Usually you then use the other boundary condition R(r=R)=0 to get the energies. If the wave function above didnt include the sinh-term (the z dependence) i know that the energies are given by the condition:


    [tex]
    J_m(\sqrt{\frac{2mE}{\hbar^2}}r) = 0
    [/tex]

    which gives

    [tex]
    E(m,n) = \frac{\hbar^2}{2mR^2}r_m_n
    [/tex]

    where r_mn is the n:th root of the m:th Bessel function.

    But with this problem's wave function i dont know how to calculate the energies.
    Any ideas?

    The answer is:

    [tex]
    E(m,n) = \frac{\hbar^2}{2m}[(\frac{r_m_n}{R})^2+(\frac{l\pi}{H})^2]
    [/tex]
     
  2. jcsd
  3. May 14, 2005 #2

    OlderDan

    User Avatar
    Science Advisor
    Homework Helper

    [tex]\frac {d^2Z(z)} {dz^2} = \lambda^2z[/tex]

    Perhaps [itex] \lambda [/itex] needs to be imaginary to satisfy your boundary conditions??
     
  4. May 14, 2005 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    OlderDan's point is that sinh(x) is a one to one function and is not 0 at two different points. If λ is imaginary (equivalently: if &lamda;2 is negative), you get sine and cosine solutions which are periodic.
     
  5. May 14, 2005 #4
    Thank you.
    ok...lets see if i understand.

    we have

    [tex]\frac {d^2Z(z)} {dz^2} = \lambda^2z[/tex]

    My book says that if [tex] \lambda > 0[/tex] the general solution is

    [tex]C_1cosh (\lambda z) + C_2sinh (\lambda z)[/tex]

    But in the problem we have Z=0 at two different points

    "OlderDan's point is that sinh(x) is a one to one function and is not 0 at two different points."

    so [tex]\lambda[/tex] must be imaginary (or am i something wrong when i eliminate C1cosh because of the boundary condition Z(0)=0. Either way the main problem remains.)

    "If λ is imaginary you get sine and cosine solutions which are periodic."

    and the general solution is

    [tex]C_1cos (\lambda z) + C_2sin (\lambda z)[/tex]



    Then you get

    [tex]Z(z) = C_1sin(\pi lz/H)[/tex]

    [tex]\Psi(r,\phi,z) = R(r) \Phi(\phi)Z(z)[/tex]

    [tex]\Psi(r,\phi,z) = const.*J_m(\sqrt{\frac{2mE}{\hbar^2}}r)exp(im\phi) sin(\pi lz/H)[/tex]

    sin instead of sinh in the wave function.
    where

    [tex]R(r) = C*J_m(\sqrt{\frac{2mE}{\hbar^2}}r)[/tex]

    One problem solved...i hope.
    But i still dont know how to continue.

    Now you should use the other boundary condition
    R(r=R)=0 to get the energies. Is this correct:

    [tex]const.*J_m(\sqrt{\frac{2mE}{\hbar^2}}R)exp(im\phi) sin(\pi lz/H) = 0[/tex]

    and then you solve for E and get the energies?

    I dont really know how to do this tho.
     
  6. May 14, 2005 #5

    OlderDan

    User Avatar
    Science Advisor
    Homework Helper

    Assuming you now have the correct eigenfunction, if you put it back into the original equation

    [tex]-\frac{\hbar^2}{2m}\nabla^2\Psi(r,\phi,z) = E\Psi(r,\phi,z) [/tex]

    and operate on the left hand side you should get a constant times the original function. The const. in your function divides out. You just need to associate the constant that comes from doing the operation on the left hand side with the E on the right hand side.
     
  7. May 14, 2005 #6
    I solved it. Thank you!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?