Satellite Orbit synchronization

  • I
  • Thread starter name123
  • Start date
  • #1
444
3

Main Question or Discussion Point

Consider a large non-rotating sphere, and one series of satellites, series A, in free fall orbit at the same velocity and altitude slightly above its "equator" going from east to west. Forming a ring in which all the satellites are equal distance apart, and another series of satellites, series B, forming a similar ring but in the opposite direction. And that in space to both the North and South of the sphere were two space ships at rest with respect to the sphere, at a distance far enough away from the sphere that all the satellites could observe one or the other at all times. These two spaceships have synchronised clocks which flash a bright light every second.

My question is whether it is possible that all the clocks on the series A satellites could be synchronised such that they could agree upon when the flashes from the two space ships happened?

The reason I am asking is that if they could then there seems to me to be a contradiction when certain assumptions are made. The clocks in series A satellites could be in synch with each other, as could the clocks in the series B satellites. Yet each time a satellite from series A passes a satellite from series B they could observe each other firing torches off a mirrored ceiling and conclude that the clock on the other satellite from the other series was running slower than its own, as light appeared to travel a longer distance during for the same clock time (on the other clock). However since the clocks in each series would be in synch, each time a satellite from series A passed one from series B it could be seen the no more time had expired for the clocks on either series. So how could the conclusion that the clocks on the other series be considered correct if the interval between each time a satellite from series A passed on from series B was constant and equal according to the clocks in each series? The conclusion based on the assumption would appear to be contradicted by the experimental results of comparing the amount of time that had expired.

Admittedly this is quite similar to a thread that was closed, but the question is different. <forum feedback removed>
 
Last edited by a moderator:

Answers and Replies

  • #2
29,072
5,340
My question is whether it is possible that all the clocks on the series A satellites could be synchronised such that they could agree upon when the flashes from the two space ships happened?
Be aware, this is a general relativity question, and so it can be very messy.

The answer is yes. You can simply have them all agree to use any given reference frame. Then they will all be synchronized and they will all agree on the timing of any flash. There is no need for them to use a reference frame where they are at rest or where their clocks keep coordinate time. This approach is taken in the GPS system.

The clocks in series A satellites could be in synch with each other, as could the clocks in the series B satellites.
If they all agree to use the same reference frame then they can all be in synch with each other at all times, both A and B. Again, they do not need to use a reference frame where they are at rest and their clocks keep coordinate time.
 
  • #3
444
3
If they all agree to use the same reference frame then they can all be in synch with each other at all times, both A and B. Again, they do not need to use a reference frame where they are at rest and their clocks keep coordinate time.
Thanks Dale. Just to be clear, I am not assuming the clocks involve any adjustments based on some calculation. Just standard wind-up clocks, or atomic clocks maybe. Is that still ok?
 
  • #4
29,072
5,340
Thanks Dale. Just to be clear, I am not assuming the clocks involve any adjustments based on some calculation. Just standard wind-up clocks, or atomic clocks maybe. Is that still ok?
That is fine, but proper time alone does not define a reference frame.

I think that you need to explicitly write down the reference frame you have in mind. You should write it either in terms of the metric in that frame or in terms of a transformation from one of the standard reference frames on the Schwarzschild spacetime. (Or both)
 
  • #5
444
3
That is fine, but proper time alone does not define a reference frame.

I think that you need to explicitly write down the reference frame you have in mind. You should write it either in terms of the metric in that frame or in terms of a transformation from one of the standard reference frames on the Schwarzschild spacetime.
I am not really too concerned about reference frames. My concern is that (as I understand it) with certain assumptions it may be concluded by a satellite in series A when it watches a passing satellite in series B bounce torch light off its mirrored ceiling that because the light seemed to travel further for the same time interval that a light bounce takes in the A satellite, that proper time is passing slower on the B series satellites (it's clocks are running slower). As that conclusion would be proved to be incorrect each time an A series satellite passed a B series satellite and the clocks could be seen to still be in synch.
 
  • #6
29,072
5,340
I am not really too concerned about reference frames.
You cannot discuss synchronization at all without a reference frame. (more precisely without a coordinate chart)
 
  • #7
444
3
You cannot discuss synchronization at all without a reference frame. (more precisely without a coordinate chart)
Well I was considering the clocks to be synchronised if the observers in the satellites agree with what time their clocks were showing when the spaceships flashed their lights. Perhaps they could have some digital clocks, and sensors to detect the light and the results be written out to a log. Even if that is not in line with an official definition it seems sufficient for the issue I am considering. The satellites could also display their digital clocks on the sides so that their readings could be filmed as the satellites passed each other.

The issue was simply whether it would be wrong for a satellite in the A series to conclude that the clock on a satellite in the B series was running slower simply because the light (flashed from a torch) on the B series seemed to travel further per second of the B series clock.
 
  • #8
29,072
5,340
Well I was considering the clocks to be synchronised if the observers in the satellites agree with what time their clocks were showing when the spaceships flashed their lights.
Yes, I understood that from your original post. That requires a reference frame.

The issue was simply whether it would be wrong for a satellite in the A series to conclude that the clock on a satellite in the B series was running slower simply because the light (flashed from a torch) on the B series seemed to travel further per second of the B series clock.
This comparison also requires a reference frame. (again, more precisely a coordinate chart).

A coordinate chart defines both what is meant by "when the spaceships flashed their lights" and "running slower". You simply cannot avoid it for this question. I am sorry, you clearly do not like that response, but I cannot give you another response for this question.
 
  • #9
444
3
Yes, I understood that from your original post. That requires a reference frame.
Why at the end can the logs not just be compared to see if they agree?

This comparison also requires a reference frame. (again, more precisely a coordinate chart).

A coordinate chart defines both what is meant by "when the spaceships flashed their lights" and "running slower". You simply cannot avoid it for this question. I am sorry, you clearly do not like that response, but I cannot give you another response for this question.
What I meant by when the spaceships flashed their lights is when those light signals were detected by each satellite, and that will be indicated by the clock reading written out to the logs.

What I meant by one clock running slower than another is that if the clocks (or clocks in synch with them) were to be compared at a later time the clock which was running slower would indicate that less time had passed. Like with gravity time dilation for example, where a clock under a stronger gravitational field will run slower than one at rest with respect to it, but under a weaker gravitational field.

What concern have you with those answers?
 
  • #10
jbriggs444
Science Advisor
Homework Helper
2019 Award
8,322
3,155
Yet each time a satellite from series A passes a satellite from series B they could observe each other firing torches off a mirrored ceiling and conclude that the clock on the other satellite from the other series was running slower than its own, as light appeared to travel a longer distance during for the same clock time (on the other clock).
Given the unusual synchronization scheme, it will no longer be true that light travels at c according to the coordinates in use. It will have an obvious anisotropy, travelling more slowly "upstream" and more rapidly "downstream".

This means that one has to reason more carefully than a simplistic "light travels farther, therefore takes more time" to obtain a contradiction.
 
Last edited:
  • #11
1,410
111
@name123 If the satellites moved around using rockets, then we could safely say that acceleration of a satellite has some effect on that satellite's idea about ticking rates of distant clock.


(Making the satellites move by their own power would not change the logic of the scenario)
 
  • #12
29,072
5,340
Why at the end can the logs not just be compared to see if they agree?
Synchronization requires specification of a coordinate chart. Logs are irrelevant without it. You can have the same logs written indicating synchronization or not depending on your coordinate chart. Evidence, such as logs, does not specify simultaneity, the reference frame does. This isn't a question of technology or method, it is a question of definition.

This is getting exhausting. You can either specify a reference frame and get a specific answer to this question, or you can ask a different question.
 
  • #13
444
3
@name123 If the satellites moved around using rockets, then we could safely say that acceleration of a satellite has some effect on that satellite's idea about ticking rates of distant clock.


(Making the satellites move by their own power would not change the logic of the scenario)
Yes, if you had a series C and series D satellites using rockets, then their clocks would be ticking slower than those of the A and B series and that could be observed, when comparing their spaceship flash detection logs, and when they pass each other.
 
  • #14
444
3
Synchronization requires specification of a coordinate chart. Logs are irrelevant without it. You can have the same logs written indicating synchronization or not depending on your coordinate chart. Evidence, such as logs, does not specify simultaneity, the reference frame does.

This is getting exhausting. You can either specify a reference frame and get a specific answer to this question, or you can ask a different question.
Perhaps you could suggest how you would approach the problem
 
  • #15
jbriggs444
Science Advisor
Homework Helper
2019 Award
8,322
3,155
Yes, if you had a series C and series D satellites using rockets, then their clocks would be ticking slower than those of the A and B series and that could be observed, when comparing their spaceship flash detection logs, and when they pass each other.
Since we have not reached a meeting of the minds on a scenario with satellites in regular circular orbits, it seems premature to try to reason about powered rocket ships travelling willy nilly.
 
  • #16
29,072
5,340
Perhaps you could suggest how you would approach the problem
I would specify the coordinate chart as a transformation from one of the standard charts on the Schwarzschild spacetime (as I said in post 4). Probably just the standard Schwarzschild coordinates. I would also specify the metric, but I would start with the transformation.

I would also explicitly express the comparisons I was interested in either in terms of the coordinates or in terms of invariants.
 
  • #17
444
3
I would specify the coordinate chart as a transformation from one of the standard charts on the Schwarzschild spacetime (as I said in post 4). Probably just the standard Schwarzschild coordinates. I would also specify the metric, but I would start with the transformation.
And when you did would the series A and series B clocks be considered to be synchronised? Or perhaps to put it a different way, for each event of an A series satellite passing a B series satellite would their clocks be predicted to be showing the same time?
 
  • #18
29,072
5,340
And when you did would the series A and series B clocks be considered to be synchronised?
You could choose coordinates either way. If you want them to be synchronized then you can choose such coordinates, if you don't want them to be synchronized then you can choose other coordinates. The choice is up to you.

Btw, I will not work this explicitly for you. It is a messy problem. If you are that interested in it then you will need to go through the effort yourself.
 
  • #19
444
3
You could choose coordinates either way. If you want them to be synchronized then you can choose such coordinates, if you don't want them to be synchronized then you can choose other coordinates. The choice is up to you.

Btw, I will not work this explicitly for you. It is a messy problem. If you are that interested in it then you will need to go through the effort yourself.
So are you saying that there is a coordinate system that you could choose in which the event of an A series satellite passing a B series satellite would not be predicted as being an event in which their clocks showed the same time? Perhaps imagine that the A satellites have a hole in them which the B series satellites pass through, so with a sausage roll analogy the A satellite would be the pastry and the B satellite the sausage.
 
  • #20
1,410
111
Since we have not reached a meeting of the minds on a scenario with satellites in regular circular orbits, it seems premature to try to reason about powered rocket ships travelling willy nilly.

Well, the traveling twin in the twin paradox uses a rocket. If he used deflection by the gravity field of a neutron star instead, can you explain what happens in that case?

The explanation would probably be useful in this current scenario too.
 
  • #21
29,072
5,340
So are you saying that there is a coordinate system that you could choose in which the event of an A series satellite passing a B series satellite would not be predicted as being an event in which their clocks showed the same time?
That is a different question. The answer to that is an invariant and does not depend on the coordinate system.
 
  • #22
Nugatory
Mentor
12,619
5,171
So are you saying that there is a coordinate system that you could choose in which the event of an A series satellite passing a B series satellite would not be predicted as being an event in which their clocks showed the same time? Perhaps imagine that the A satellites have a hole in them which the B series satellites pass through, so with a sausage roll analogy the A satellite would be the pastry and the B satellite the sausage.
No, we are not saying that.

Everyone always has to agree about what two clocks read when they are side by side at the same point in space. Depending on how they were initially set and how they got to that same point they may or may not read the same - but everyone will agree about the numbers that will appear on their face when they are side by side.

However, when the two clocks are not colocated, any comparison between them is necessarily frame-dependent and coordinate-dependent. I can choose a coordinate system in which the two clocks always read the same, or I can choose a coordinate system in which one clock is slower than the other, or faster, or whatever. This is because any comparison between two clocks that are not colocated is basically asking "what do the two clocks read at the same time?"; "at the same time" means "at the points on their worldlines that have the same ##t## coordinate"; and that obviously depends on how you choose your coordinate system.
 
  • #23
444
3
No, we are not saying that.

Everyone always has to agree about what two clocks read when they are side by side at the same point in space. Depending on how they were initially set and how they got to that same point they may or may not read the same - but everyone will agree about the numbers that will appear on their face when they are side by side.

However, when the two clocks are not colocated, any comparison between them is necessarily frame-dependent and coordinate-dependent. I can choose a coordinate system in which the two clocks always read the same, or I can choose a coordinate system in which one clock is slower than the other, or faster, or whatever. This is because any comparison between two clocks that are not colocated is basically asking "what do the two clocks read at the same time?"; "at the same time" means "at the points on their worldlines that have the same ##t## coordinate"; and that obviously depends on how you choose your coordinate system.
So can you choose a coordinate system where each time an A series satellite passes a B series satellite their clocks display the same time and all the A and B series clocks log the same time for the spaceship flashes, but in which the clocks in the A and B series are not synchronous (some are running faster or slower than the others)?
 
  • #24
29,072
5,340
So can you choose a coordinate system where each time an A series satellite passes a B series satellite their clocks display the same time and all the A and B series clocks log the same time for the spaceship flashes, but in which the clocks in the A and B series are not synchronous (some are running faster or slower than the others)?
I don't know. You would have to actually work out the messy math.
 
  • #25
444
3
I don't know. You would have to actually work out the messy math.
When you say you do not know, do you mean that you do not know whether there is such a coordinate system, or do you mean you know that there is, but you do not know what it is?
 

Related Threads on Satellite Orbit synchronization

Replies
3
Views
912
  • Last Post
Replies
10
Views
4K
  • Last Post
Replies
7
Views
3K
  • Last Post
Replies
6
Views
712
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
18
Views
2K
  • Last Post
Replies
7
Views
3K
  • Last Post
Replies
1
Views
370
Replies
13
Views
2K
Top