Science and engineering math: non-homogeneous differential equation

chatterbug219
Messages
15
Reaction score
0

Homework Statement



Solve the differential equation
y(iv)(t) - 16y(t) = 30sint
subject to y(0) = 0, y'(0) = 2, y"(∏) = 0, y'"(∏) = -18

Homework Equations



There is a Laplace transform table attached if needed :)

The Attempt at a Solution



I tried making it homogeneous and then taking the Laplace. But I don't think that was right because wouldn't the Laplace of y(t) just be the definition of a Laplace ∫ y(t)e-stdt? So that's where I got confused
 

Attachments

Physics news on Phys.org
hi chatterbug219! :smile:

just solve x4 - 16 = 0 :wink:
 
(x2-4)(x2+4)=0
x=2

But how do I use that to solve the differential?
 
chatterbug219 said:
(x2-4)(x2+4)=0
x=2

there are four roots

haven't you covered how to solve polynomial differential equations?
 
chatterbug219 said:

Homework Statement



Solve the differential equation
y(iv)(t) - 16y(t) = 30sint
subject to y(0) = 0, y'(0) = 2, y"(∏) = 0, y'"(∏) = -18

Homework Equations



There is a Laplace transform table attached if needed :)

The Attempt at a Solution



I tried making it homogeneous and then taking the Laplace. But I don't think that was right because wouldn't the Laplace of y(t) just be the definition of a Laplace ∫ y(t)e-stdt? So that's where I got confused

If you take the Laplace Transform of the DE, you need y''(0) = a and y'''(0) = b, which you are not given. However, you can solve for the transform Y(s) as a function of the unknown parameters a and b. Then you can get the solution y(t) in terms of a and b; then you can impose the boundary conditions at t = π to finally determine a and b.

RGV
 
So I did that and I got
Y= 30[1/(s2+1)(s4-16)] + (2s2+as+b)/(s4-16)
Do I do partial fractions for this now to get a and b? Then take the inverse Laplace?
 
chatterbug219 said:
So I did that and I got
Y= 30[1/(s2+1)(s4-16)] + (2s2+as+b)/(s4-16)
Do I do partial fractions for this now to get a and b? Then take the inverse Laplace?

Try it and see!

RGV
 
I've been trying to do the partial fractions for both...so far all I have is
1/(s2+1)(s4-16)
where I get
[As+B/(s2+1)] + [(Cs+D)/(s4-16)]
which simplifies to
[As(s4-16)]+[B(s4-16)]+[Cs(s2+1)]+[D(s2+1)]
and D=1 & C=-2/5...but I can't seem to get A or B to cancel so I can solve for them

the second one is (2s2+as+b)/(s4-16)
but I don't know how to do partial fractions for that
 
Last edited:
chatterbug219 said:
I've been trying to do the partial fractions for both...so far all I have is
1/(s2+1)(s4-16)
where I get
[As+B/(s2+1)] + [(Cs+D)/(s4-16)]
which simplifies to
[As(s4-16)]+[B(s4-16)]+[Cs(s2+1)]+[D(s2+1)]
and D=1 & C=-2/5...but I can't seem to get A or B to cancel so I can solve for them

the second one is (2s2+as+b)/(s4-16)
but I don't know how to do partial fractions for that

Write (s^4 - 16) = (s^2+4)(s^2-4) = (s-2)(s+2)(s^2+4) and go on from there. Alternatively, if you want to avoid quadratic denominators altogether, you could take complex roots and write (s^4 - 16) = (s-2)(s+2)(s-2i)(s+2i), but that is not really necessary, since the inverse Laplace of 1/(s^2 + w^2) is tabulated.

RGV
 
  • #10
So I got the partial fractions for the first one, but not the second one becaue the a and b are throwing me off...I don't know what to do with them in order to get the partial fractions of
[2s2+as+b]/[(s-2)(s+2)(s2+4)]
 
  • #11
chatterbug219 said:
So I got the partial fractions for the first one, but not the second one becaue the a and b are throwing me off...I don't know what to do with them in order to get the partial fractions of
[2s2+as+b]/[(s-2)(s+2)(s2+4)]

Figure out \frac{1}{(s-2)(s+2)(s^2+4)} = \frac{A}{s-2} + \frac{B}{s+2} + \frac{Cs + D}{s^2+4}, then multiply by the numerator.

RGV
 
  • #12
Okay...
-1/8(s2+4) - 1/32(s+2) + 1/32(s-2)

So do I multiply 2s2+as+b by -1/8(s2+4) - 1/32(s+2) + 1/32(s-2)? Is that you were saying?
But how do I take the inverse Laplace of 2s2+as+b? That's where I'm really confused
 
Last edited:
Back
Top