Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Shooting bullets, work & power

  1. Dec 10, 2018 #1
    1. The problem statement, all variables and given/known data
    When bullets are shot on Superman, they bounce off of his chest. 100 Bullets will be shot on his chest per minute, each with a mass of 9g and v= 1000m/s. Assume that the bullets will bounce off elastically back in x-direction.

    a) What is the average power of all of the bullets?

    b) What work should superman perform
    i) when he stands still?
    ii) when he moves towards the shooter with a speed of 20km/h?


    2. Relevant equations
    P=W/t
    W=Fd/t
    W=KE/t
    KE=1/2mv^2
    3. The attempt at a solution
    a) P= [ (1/2mv^2)*100 ] / 60 = 7500watt

    For a) I found the total kinetic energy of all the bullets and divided by the total time, 60s, to find the average power.

    I found b) confusing
    so in i) since he stands without moving ( unaffected by the bullets) I thought the work he is doing must be equal with the work all the bullets are doing and in opposite direction. So that he opposes all that work by the bullets. However as I realised, an object usually does move to do some work. so can he still be doing work standing still there? ( like if a ball hits a wall, I guess the ball is doing work but the wall is not? )

    my suspected answer would be W= [ (1/2mv^2)*100 ] = 450,000watt

    for ii) then for ii I would assume the work is the sum of work done in i) plus the work done for just moving which is m*v ( v is known but mass of the guy isn't). That would be my idea but seemingly it wouldn't work since I don't even know the guy's mass.

    Can you please help me about this question?
     
  2. jcsd
  3. Dec 10, 2018 #2

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    Be careful....What is the definition of work? Is Superman doing work when he stands still?

    For the secnd part of b, how would you measure the rate at which he does work? (Hint:what force does he apply to the bullets?)

    AM
     
  4. Dec 10, 2018 #3

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2018 Award

    They're both elastic collisions, so think about what happens during a bounce. At the halfway point nothing is moving, so where has all the work gone?
    mv is not work, so you can rule that out. And ifhe is moving at constant speed he requires no work to maintain that.
    Think about the change the bullets undergo.
     
  5. Dec 11, 2018 #4

    neilparker62

    User Avatar
    Homework Helper

    Since work = Pt, I don't see how it can be calculated without time information. Unless we mean work per second which - in any case - is power ?!
     
  6. Dec 11, 2018 #5

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    You are not applying the essential definition of work: ##W = \int \vec{F} \cdot d\vec{s}## - the application of a force over a distance. In part b i) does Superman exert a force through any distance? How about in b ii)?

    AM
     
  7. Dec 11, 2018 #6

    CWatters

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    If any of this seems confusing consider how much KE the bullets had before and after their elastic collision with superman. Did it change?
     
  8. Dec 11, 2018 #7

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2018 Award

    You are missing the point being made. In bii) you can calculate the (nonzero) power, not any specific quantity of work.
     
  9. Dec 11, 2018 #8

    neilparker62

    User Avatar
    Homework Helper

    I would say it does indeed seem confusing. On the face of it, there is no change in KE yet the bullets are first 'stopped' by Superman and then sent back the way they came with equal and opposite velocity (if he is stationary). Perhaps in a case like this we need to employ a slightly different 'lexicon'. Eg 'What energy absorbance (per minute) capacity will Superman require' ? Where energy 'absorbance' reflects the ability to change the KE to some form of elastic energy and then release it again.
     
  10. Dec 11, 2018 #9

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    F = dp/dt. Think of the force exerted by the bullets in bouncing off Superman by the average change in bullet momentum per unit time. That is the force that Superman must exert on the bullets in order to remain stationary. Since Superman is not applying that force over a distance, does he perform work?

    In b ii), Superman is now moving forward against the bullets. Is he now doing work? In order to determine the rate at which he is doing work, you must determine the average force he is applying to the bullets. Hint: it is more than the force applied in I) because the bullets are now travelling 20 km/hr faster relative to Superman so they rebound with the same relative speed.

    AM
     
  11. Dec 11, 2018 #10

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2018 Award

    I do not understand why you keep suggesting dealing with forces. Much simpler to consider work done on the bullets.
     
  12. Dec 12, 2018 #11

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    The difficulty that the OP seemed to be having was in determining whether and at what rate work is being done by Superman. Now one can reason that since the bullets rebound with their incident energy, Superman does no work on the bullets. But the question asked whether and at what rate Superman does work. The OP understood that he did no work in i) on the bullets but was not sure that he did no work at all. In that case I find it helpful to go back to first principles.

    This problem involves similar concepts used in the kinetic theory of gases. Superman is providing pressure to the 'bullet gas'. But no work is performed unless the pressure (force/area) acts through a volume (distance x area).

    AM
     
  13. Dec 13, 2018 #12
    Thank you for all the answers!

    So once again:
    b)i) I will consider the conservation of momentum. P before collision= P after collision (P=mv)
    Since superman doesn't experience any change in momentum after the collisions, I concluded that the bullets will move back in the x-axis with the same velocity. That means their kinetic energy is the same, thus supermen is not doing any work on the bullets (one of the definition of work is "energy you need to put into a substance to make it move" )

    for b)ii) I still have a bit of confusion here but what I concluded is:
    since superman is moving with same speed before and after the collisions (being shot), his momentum is not changing. That is why the bullets should again be moving in the opposite direction with same velocity. So their kinetic energy is not changed. That means no additional energy ( work) is given to the bullets. So superman is again doing no work.

    Does that sound good?
     
  14. Dec 13, 2018 #13
    but can ı calculate the power if I am asked to do so? like let's say if I am asked to find the work exerted by the guy on the bullets per minute? or do you mean the time of collision must be known?
     
  15. Dec 13, 2018 #14

    jbriggs444

    User Avatar
    Science Advisor

    Newton's third law says that if there is no acceleration there is no net force. Not that there is no force.
     
  16. Dec 13, 2018 #15
    do you mean no net force exerted on the bullets by superman?
     
  17. Dec 13, 2018 #16

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2018 Award

    How do you conclude that? What do you know about elastic collisions of two bodies that are both moving?
    Yes.
    Are the bullets accelerating? Remember that velocity and acceleration are vectors; they have direction.
     
  18. Dec 13, 2018 #17
    Momentum before collision = momentum after collision

    since the question states that they bounce off and move towards the opposite direction I concluded they must move in the opposite direction after the collision and the guys mass or velocity is never changing so it must mean the momentum of bullets shouldn't be changing too since their mass aren't changing. So speed must be the same too. But when I calculated using the formula i can see the direction is actually somehow not changing.

    m(20km/h *1000/3600) + 9x10^-3kg(-1000m/s) = m(20km/h*1000/3600) + 9x10^-3kg(v)

    9x10^3kg(-1000m/s) = 9x10^-3kg(v)
    v= -1000m/s

    is power not equal to work divided by time? how can I calculate the power if I can't calculate the work? Or can I calculate the work?

    They are not
     
  19. Dec 13, 2018 #18

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2018 Award

    That works if you take more of a big picture view, looking at the changes in energy over a longish period of time (compared to the interval between bullets). But if you want to analyse it in terms of forces you need to get into finer detail. Mr S's speed will not actually be constant. Each bullet will necessarily slow him a little, and he will have to do some work to get back to his prior speed.
    To pursue this line, introduce an unknown for his mass. It should disappear later.
    Momentum is a vector! If the direction changes, momentum changes.
    The reason you cannot calculate the work is that you are not given a time period over which to measure it. There is enough information to find the power.
    E.g. if you know the radius of a car wheel and how fast it is rotating (without slipping) you can find the speed of the car, but you cannot say how far it went.
    Again, acceleration is a vector. A change in direction of velocity constitutes an acceleration.
     
  20. Dec 13, 2018 #19

    neilparker62

    User Avatar
    Homework Helper

    Let's try quantifying a little. For a perfectly elastic collision of two masses m1 and m2 in which m1 <<m2 , the equal and opposite collision impulse is given by the equation: $$Δp \approx 2m_1Δv$$ We note firstly that since - as stated - the impulse(s) (and hence force(s)) on the colliding bodies are equal and opposite, there is no net force it being assumed (naturally) that the colliding bodies are in contact for an equal time period Δt. Secondly that the collision impulse depends on Δv, their relative velocity. Hence the collision impulse applied to the bullets will increase if Superman moves in a direction opposite to their original direction. They will 'return to sender' at a velocity increased in magnitude by 2 x Superman's velocity.

    This leaves us pondering the somewhat improbable physics of Superman absorbing bullets 'elastically'. Note that unless he has powers outside of the laws of physics, he will have to slow down however infinitesimally. Whatever kinetic energy is gained by the bullets must be lost by Superman otherwise the problem does not satisfy the assumptions on conservation of kinetic energy and of momentum for a 'perfectly elastic collision'.
     
    Last edited: Dec 13, 2018
  21. Dec 14, 2018 #20

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    Well, he is Superman - faster than a speeding bullet and more powerful than a locomotive. He flies through the air without propellers and without jets or rockets. The bullets are obviously made out of something that allows them to deflect without permanently deforming and generating heat (no loss of energy). So I think we are to suspend the laws of physics for Superman and the bullets and just accept they do what the problem says they do - Superman deflects the bullets elastically while maintaining constant speed of 20 km/hr.
    Whatever kinetic energy the bullets gain, Superman provides by doing work. You cannot determine the actual instantaneous forces on Superman. But you can determine the average force by F = Δp/Δt where Δp is the total change in bullet momentum of 100 bullets and Δt is 60 seconds. Keep in mind that in b ii) the change in momentum of the bullets in the lab frame is not from mv to -mv. The speed at which they bounce back off Superman is not the incoming speed of 1000 m/sec.

    AM
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?