Show the expectation value is non negative

bobred
Messages
170
Reaction score
0

Homework Statement


The kinetic energy is given by \left\langle E_{kin} \right\rangle = \frac{\left\langle \widehat{p}^2 \right\rangle}{2m}

In Dirac notation we have

\left\langle E_{kin} \right\rangle = \frac{1}{2m} \left\langle \widehat{p}\Psi | \widehat{p}\Psi \right\rangle

Homework Equations


We are asked to give this in integral form and involving \left| \frac{\partial \Psi}{\partial x} \right|

\left\langle E_{kin}\right\rangle =\dfrac{1}{2m} \displaystyle\int_{-\infty}^{\infty}\widehat{\textrm{p}}_{x}^{*}\Psi^{*}(x,t)\widehat{ \textrm{p}}_{x} \Psi(x,t) dx

Which then becomes

\dfrac{\hbar^{2}}{2m} \displaystyle\int_{-\infty}^{\infty}\left|\dfrac{\partial\Psi}{\partial x}\right|^{2} dx

The Attempt at a Solution


This is not a problem but we are also asked to confirm explicitly that this cannot be negative in value

\dfrac{\hbar^{2}}{2m} \displaystyle\int_{-\infty}^{\infty} \frac{\partial^2}{\partial x^2} \left| \Psi \right|^{2} dx

Is this valid? As the constants on the left are positive and the square of the modulus of a complex function is non negative.

Thanks
 
Physics news on Phys.org
The square of a first derivative of a function is not the second derivative of that function squared.


Isn't the answer obtained directly from:
bobred said:
\dfrac{\hbar^{2}}{2m} \displaystyle\int_{-\infty}^{\infty}\left|\dfrac{\partial\Psi}{\partial x}\right|^{2} dx
 
Yes, thanks.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top