Show the group action on (x, y) and, desribe the orbits.

  • Thread starter Thread starter Edellaine
  • Start date Start date
  • Tags Tags
    Group Orbits
Edellaine
Messages
11
Reaction score
0

Homework Statement


1 a) Prove that the group (nZ, +) acts on Z by a*g = a + g for all g in nZ and for all a in Z.
b)What are the orbits?
c)How many orbits are there? Do the set of orbits remind you of anything in number theory?

Homework Equations


not sure


The Attempt at a Solution


a) For e in (nZ, +), e = 0. so a*e = a+e = a+0 = a. So the identity of (nZ, +) is also the identity on Z.
For g, h in nZ, and for a in Z, a*(g+h) = a+(g+h) = (a+g)+h = (a*g)*h.

b, c) I know what the definition of what an orbit is (here for some a in Z, O_a = {a*g = a+g | g in nZ}) I'm not sure what the question is actually asking.

For c, would the amount of orbits be equal to the amount of elements in nZ, or 2n+1?
 
Physics news on Phys.org
I don't think you are quite getting what the action is. Read the definition again. Two elements a and b are in the same orbit if a=b+k*n for some k in Z. Isn't that what it's saying? That really should ring a bell.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top