• Support PF! Buy your school textbooks, materials and every day products Here!

Shrinking Loop

  • Thread starter Charanjit
  • Start date
  • #1
48
0
1. Homework Statement :
A circular loop of flexible iron wire has an initial circumference of 166cm , but its circumference is decreasing at a constant rate of 13.0cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T, which is oriented perpendicular to the plane of the loop.

Question: Find the (magnitude of the) emf induced in the loop after exactly time 6.00 s has passed since the circumference of the loop started to decrease.


2. Homework Equations :
Flux= Close integral(B*dA)
e=(d/dt)Flux


3. The Attempt at a Solution :
C(t)=C0-at = 1.66-0.13(6.00)=0.88m
0.88=2pi*r --> pi*r=0.44
e=pi*rdrB = 0.44(1)(0.130m/s)/2pi = 0.00190V

Since I am using web assign, it said this was incorrect. and gave me feedback which stated: A decrease in the circumference of the loop will also cause a decrease in the area and hence the magnetic flux. This will induce an emf in the loop.


Hmm... seems like two things are chaning the circumference and the area. So where am I wrong, and what should I do?

Edit: Also are there ways to enter integral sign and other things here?
 
Last edited:

Answers and Replies

  • #2
48
0
Anyone help on this?
 
  • #3
48
0
Hello?
 

Related Threads on Shrinking Loop

Replies
2
Views
19K
Replies
11
Views
779
  • Last Post
Replies
2
Views
2K
Replies
6
Views
2K
  • Last Post
Replies
13
Views
1K
Replies
1
Views
155
Replies
1
Views
1K
  • Last Post
Replies
1
Views
829
  • Last Post
Replies
4
Views
2K
Top