Simple 2 variable integral just want to check my answer

  • Thread starter Thread starter Daveyboy
  • Start date Start date
  • Tags Tags
    Integral Variable
Daveyboy
Messages
57
Reaction score
0
f(x,y)=x+y
region is the triangle with vertices at (0,0) (2,0) (0,1)

I got 1/3

don't have maple handy, could anyone check if this is right?
 
Physics news on Phys.org
I get 1.
I'm pretty sure of this answer, because I did this problem in two different ways, and got the same answer both ways.
 
thanks i see it now
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top