Simple Harmonic Motion: Determine Velocity at t=0.250s

AI Thread Summary
The discussion revolves around calculating the velocity of a 39.8 g oscillating mass at t=0.250s using the position equation x(t) = (2.00cm)cos(5t - 4.00π). The correct formula for velocity is V_x = -ωA sin(ωt + φ), where the user initially miscalculated the velocity due to unit conversion errors. After clarification, it was noted that the velocity should be expressed in cm/s instead of m/s. The key takeaway is the importance of unit consistency in calculations. Understanding the relationship between velocity and position is crucial for solving harmonic motion problems effectively.
Moe*
Messages
10
Reaction score
0
_{}b]1. Homework Statement [/b)

The position of a 39.8 g oscillating mass is given by the equation x(t)= (2.00cm)cos(5t- 4.00\pi) where t is in seconds. Determine Velocity at t= 0.250s

M= 39.8 g
T= 1.2575 rad/s
K= 9.95e-1 N/m
initial postion= 2 cm

Homework Equations



V_{x}= -\omegaAsin(\omegat + \phi)

The Attempt at a Solution



the attempt i just substitued
V_{x}= -5 rad/s*2sin( 5.00(0.250)-4\pi)... but this didn't work and i don't understand why?
 
Physics news on Phys.org
for the the equations posted its supposed to be V subscript x= wAsin(wt + phi) and x(t) = (2.00cm)cos(5t - 4pi)
 
Moe* said:
The position of a 39.8 g oscillating mass is given by the equation x(t)= (2.00cm)cos(5t- 4.00\pi) where t is in seconds. Determine Velocity at t= 0.250s

What is the basic relation connecting velocity and position of any particle? Use that.
 
Moe* said:
_{}b]1. Homework Statement [/b)

The position of a 39.8 g oscillating mass is given by the equation x(t)= (2.00cm)cos(5t- 4.00\pi) where t is in seconds. Determine Velocity at t= 0.250s

M= 39.8 g
T= 1.2575 rad/s
K= 9.95e-1 N/m
initial postion= 2 cm

Homework Equations



V_{x}= -\omegaAsin(\omegat + \phi)

The Attempt at a Solution



the attempt i just substitued
V_{x}= -5 rad/s*2sin( 5.00(0.250)-4\pi)... but this didn't work and i don't understand why?
it seems work to me...
 
Your right it does work, i guess I entered in the wrong units when i answered the question( m/s instead of cm/s).
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top