Simple harmonic motion interpretation problem

AI Thread Summary
The discussion centers on the interpretation of the equation t = (1/ω) cos^(-1)(x/A) derived from x = A cos(ωt) in simple harmonic motion (SHM). The confusion arises when considering the value of t when x = 0, as the expectation is that t should also be 0, indicating no movement. It is clarified that the equation assumes t = 0 corresponds to the maximum displacement, not the equilibrium position. To achieve x = 0 at t = 0, the sine function should be used instead of cosine. The participants agree on the importance of understanding that x represents displacement from equilibrium, not from the initial time.
Celso
Messages
33
Reaction score
1
I'm in trouble trying to understand the expression ##t= \frac{1}{\omega} cos^{-1}(x/A)## that comes from ##x = Acos(\omega t)##, in which ##A## is the amplitude, ##t## is time and ##x## is displacement.
When ##x = 0##, ##t = \frac{\pi}{2\omega} ##, shouldn't it be 0 since there was no movement?
 
Physics news on Phys.org
##\cos^{-1}## has multiple roots.
 
  • Like
Likes Celso
Dale said:
##\cos^{-1}## has multiple roots.
It has a root in ##x/A = 1##, but in that case the distance would be equal to the amplitude, not zero
 
You seem to be using a form of the SHM equation that treats ##t=0## as a time when ##x## is a maximum. If you want ##x=0## at ##t=0## you need to use ##\sin##, not ##\cos##.
 
  • Like
Likes Celso
Yes, @Ibix is right. In this equation x is the displacement from equilibrium, not the displacement from t=0. It starts at the peak.
 
ah that's my mistake, thank you guys
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top