Simple harmonic motion springs

AI Thread Summary
The amplitude of oscillation in a spring-mass system is determined solely by the additional displacement (Y) from the equilibrium position, rather than the total displacement (X + Y). This is because simple harmonic motion (SHM) relies on the restoring force being proportional to the displacement from the equilibrium position. When the mass is displaced, the spring's restoring force acts to return it to this equilibrium, which is defined by the position after the initial stretch (X). Even if the spring is partially stretched when unloaded, the restoring force remains consistent, leading to the same oscillation period. Therefore, the amplitude of oscillation is only influenced by the displacement from the new equilibrium position.
Jas
Messages
8
Reaction score
0
I have a spring with mass M attached, and leave it at equilibrium. Then I displace it some more by stretching it down a bit more. Displacement due to the mass= X, displacement due to stretching it even more=Y.

Why isn't the amplitude of oscillation= X+Y, but is only actually only Y? This is really confusing me!

Relevant equations: (L is the natural length of the spring, and x is the extension, λ is the modulus of elasticity
Tension=λx/L
Energy stored=λx^2/2L
 
Physics news on Phys.org
Jas said:
I have a spring with mass M attached, and leave it at equilibrium. Then I displace it some more by stretching it down a bit more. Displacement due to the mass= X, displacement due to stretching it even more=Y.

Why isn't the amplitude of oscillation= X+Y, but is only actually only Y? This is really confusing me!

Relevant equations: (L is the natural length of the spring, and x is the extension, λ is the modulus of elasticity
Tension=λx/L
Energy stored=λx^2/2L
What if ##Y = 0##?
 
PeroK said:
What if ##Y = 0##?
Then it would just stay in equillibrium
 
Jas said:
Then it would just stay in equillibrium

But you would have it oscillate with amplitude ##X+ Y = X##.
 
Jas said:
Why isn't the amplitude of oscillation= X+Y, but is only actually only Y? This is really confusing me!
The nature of SHM is that the restoring force is proportional to the displacement from the equilibrium (or rest) position. Y will be positive or negative, depending on whether the mass is above or below position X. We, of course, assume that the k of the spring is the same over the whole range of positions of the mass.
Here's another idea. Assuming the spring is partly open went unloaded (easy to arrange by giving it a good stretching!) Then imagine the spring and mass are laid on a frictionless horizontal surface ( dry, clean ice). The rest position of the mass will now be different, with respect to the fixing of the spring but the restoring force per cm of displacement will still be the same. So the period will be exactly the same as when the mass is hanging down. The amplitude will still be the maximum displacement relative to the rest position.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top