Simple particle on slope confusion

AI Thread Summary
The discussion centers on the confusion regarding calculating the velocity of a particle on a frictionless slope using two different methods. The initial approach involved using the constant acceleration formula, yielding a velocity of v = sqrt(2gl*sin(theta)). The second method, which involved integrating acceleration over time, initially seemed to produce a different result, leading to uncertainty. Upon further examination, it was revealed that both methods yield the same result when properly evaluated. The confusion arose from a miscalculation during the verification process, which was clarified through peer assistance.
rmawatson
Messages
3
Reaction score
0

Homework Statement


a particle on a slope with angle theta with no friction. v(0) = 0, x(0) = 0, with coordinates i down the slope and j normal to it.

I am confused about why with the constant velocity forumla I get a different answer to my attempted method.. I can't see what's wrong..I need to find the velocity at "l"
x is the top of the slope of a particle on a smooth surface, with no friction,
v(0) = 0, x(0) = 0

along i direction I am starting with:

mgsin(theta) == ma

gsin(theta) == a

using constant acceleration formula

v^2 = v0^2 + 2a0(x-x0)
v^2 = 0 + 2gsin(theta)(x-0)
v = sqrt( 2gl*sin(theta) )

My original attempt below is wrong, but I can't see why. I want to know what it doesn't work the same.

so from
gsin(theta) == a

Integrating wrt t

gsin(theta)t == v + c

Integrating wrt t again

1/2*gsin(theta)t^2 == x + ct + d

with v(0) == 0 and x(0) == 0

0 = c and d = 0

so if I now plugged in 'l' to the equation for position

1/2*gsin(theta)t^2 == l

and solve for t I get,

t = sqrt[ (2l)/(gsin(theta)) ]

so this is the time at which position == l ?

If I then plug this time into the equation for velocity,

gsin(theta)t == v

gsin(theta)*sqrt[ (2l)/(gsin(theta)) ] = v

not the same as with the constant velocity forumla..
why ? what is wrong with this method

Thanks for any help
 
Physics news on Phys.org
rmawatson said:

Homework Statement


a particle on a slope with angle theta with no friction. v(0) = 0, x(0) = 0, with coordinates i down the slope and j normal to it.

I am confused about why with the constant velocity forumla I get a different answer to my attempted method.. I can't see what's wrong..I need to find the velocity at "l"
x is the top of the slope of a particle on a smooth surface, with no friction,
v(0) = 0, x(0) = 0

along i direction I am starting with:

mgsin(theta) == ma

gsin(theta) == a

using constant acceleration formula

v^2 = v0^2 + 2a0(x-x0)
v^2 = 0 + 2gsin(theta)(x-0)
v = sqrt( 2gl*sin(theta) )

My original attempt below is wrong, but I can't see why. I want to know what it doesn't work the same.

so from
gsin(theta) == a

Integrating wrt t

gsin(theta)t == v + c

Integrating wrt t again

1/2*gsin(theta)t^2 == x + ct + d

with v(0) == 0 and x(0) == 0

0 = c and d = 0

so if I now plugged in 'l' to the equation for position

1/2*gsin(theta)t^2 == l

and solve for t I get,

t = sqrt[ (2l)/(gsin(theta)) ]

so this is the time at which position == l ?

If I then plug this time into the equation for velocity,

gsin(theta)t == v

gsin(theta)*sqrt[ (2l)/(gsin(theta)) ] = v

not the same as with the constant velocity forumla..
why ? what is wrong with this method

Hello rmawatson. Welcome to PF!

Those answers are the same !
 
If I plug in numbers I get a different answer for both??
 
rmawatson said:
If I plug in numbers I get a different answer for both??
Example ... ?
 
Looks like I did something wrong when I checked it. I was so sure that my formula must be wrong (as it was a different way to the book and done by me) I didn't check twice.

You are right, and with some simple rearranging it comes out the same... thank you for your help.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top