Simple time-independent perturbation problem. QM

armis
Messages
103
Reaction score
0

Homework Statement


"Suppose we put a delta-function in the center of the infinite square well:
{H^{'}} = \alpha\delta(x-a/2) where a is a constant. Find the first order correction to the allowed energies. Explain why the energies are not peturbed for even n"

Homework Equations



The Attempt at a Solution



Just to make sure. The energies for even n are not peturbed because the wave functions are odd with respect to the center of the well, thus equal to zero at those points where the delta-function potential is (if our square well is from 0 to a). Is that correct?
 
Physics news on Phys.org
Yes, that's correct!
 
thanks
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top