Solve Drying Room Issue: Calculate Air Flow Speed & Mass Flow Rate

  • Thread starter Thread starter Dr_awkward
  • Start date Start date
  • Tags Tags
    Drying
AI Thread Summary
The discussion focuses on calculating the air flow speed and mass flow rate in a drying room's pipe system, which has specific dimensions and pressure conditions. Initial attempts to use Bernoulli's equation were deemed insufficient due to the need to account for friction in the duct. The solution involved assuming fully turbulent flow, determining the friction factor using the Moody chart, and applying the Darcy-Weisbach equation to relate pressure drop to velocity. Ultimately, a flow speed of 5.41 m/s and a mass flow rate of 0.047 kg/s were calculated, confirming the flow was fully turbulent. This approach successfully resolved the drying room's air removal issue.
Dr_awkward
Messages
2
Reaction score
0
Hello everyone!

Here is the problem:
The air removal in a drying room is done via a pipe (length 6 m, diameter 100 mm and surface roughness 0,152mm). The pipe system is composed of a sharp edged entrance and 4 standard 90 degrees turns. The excess pressure in the dryer is 50 Pa. Calculate the flow speed at which the air is removed from the dryer as well as the mass flow rate.
The temperature of the air is 37 celcius degrees (density: 1,12kg/m3 dynamic viscosity: 1,9.10-5 kg/ms)
The height drop is negligeable and we assume that the dryer is so big that the flow speed in it is 0 m/s

How far I've gotten:
I thought of using Bernoulli's equation to figure out the speed of the flow, but I think I'm missing some information:

p1-p2=(1/2)*rho*(C22-C12)

problem is that I have no idea what is c1 or c2 (speeds) is c1 supposed to be the speed of the flow in the dryer (0 m/s)?

That's where I went first. Then I asked myself what if I had to use the pressure drop equation

delta(p)=(1/2)*rho*C2*(f*(L/d)+sum(K))

The K's (rughness elements) are easy to solve (0,5 for the sharp edge and 0,3 for each of the standard turns) but to solve the friction factor, I need to use the moody chart...but to use it, I need the flow speed for the Reynold's number. So back to square one.

That is pretty much how far I've got and I see no solution in sight. I'm pretty sure it can't be too complicated of an answer.

Thanks ahead for your help, this problem has been bugging me for a while now.

P.S. : excuse my poor English as it is not my native tongue.
 
Engineering news on Phys.org
Dr_awkward said:
Hello everyone!

Here is the problem:
The air removal in a drying room is done via a pipe (length 6 m, diameter 100 mm and surface roughness 0,152mm). The pipe system is composed of a sharp edged entrance and 4 standard 90 degrees turns. The excess pressure in the dryer is 50 Pa. Calculate the flow speed at which the air is removed from the dryer as well as the mass flow rate.
The temperature of the air is 37 celcius degrees (density: 1,12kg/m3 dynamic viscosity: 1,9.10-5 kg/ms)
The height drop is negligeable and we assume that the dryer is so big that the flow speed in it is 0 m/s

How far I've gotten:
I thought of using Bernoulli's equation to figure out the speed of the flow, but I think I'm missing some information:

p1-p2=(1/2)*rho*(C22-C12)

problem is that I have no idea what is c1 or c2 (speeds) is c1 supposed to be the speed of the flow in the dryer (0 m/s)?

That's where I went first. Then I asked myself what if I had to use the pressure drop equation

delta(p)=(1/2)*rho*C2*(f*(L/d)+sum(K))

The K's (rughness elements) are easy to solve (0,5 for the sharp edge and 0,3 for each of the standard turns) but to solve the friction factor, I need to use the moody chart...but to use it, I need the flow speed for the Reynold's number. So back to square one.

That is pretty much how far I've got and I see no solution in sight. I'm pretty sure it can't be too complicated of an answer.

Thanks ahead for your help, this problem has been bugging me for a while now.

P.S. : excuse my poor English as it is not my native tongue.

The Bernoulli equation by itself is not sufficient to solve this problem. You have fluid flow in a duct with friction.

As a first trial solution, assume fully turbulent flow and find 'f' based on the pipe size. You know the total pressure drop in the system because the pressure in the dryer is 50 Pa above ambient. The only remaining unknown is the velocity in the pipe which equates to a pressure drop of 50 Pa.

You can use the Darcy equation

http://en.wikipedia.org/wiki/Darcy–Weisbach_equation

to relate total pressure drop to the velocity of the air in the pipe. Use this velocity to calculate the Reynolds number of the flow to make sure you are in the fully turbulent region. If you are in the fully turbulent region, the friction factor f will be constant for all Re as long as the pipe diameter and roughness remain constant, and your problem is solved.

I don't expect the velocity of air in the pipe to be high enough that compressibility effects will affect the solution.
 
Thank you a lot for your help!

I did as you said and assumed that the flow was fully turbulent. From the Moody chart I obtained the friction factor. (f=0,0225)

I then used the Darcy equation in a modified form that adds loss coefficients for pipe components (was given in my syllabus and it's the second one in my first post ) and found a speed of 5,41m/s for a head loss of 50 Pa.
I then checked if the flow was indeed fully turbulent and obtained Re=31890 so everything fine here.

and then I just plugged the data into the mass flow rate equation and got qm=0,047 kg/s

Thanks again for the help
 
I'm glad I could help, and that things worked out for you.
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top