Solve Ground State Energy Level of Proton in Al Nucleus - 100MeV, 5fm

Slayer537
Messages
3
Reaction score
0
I've been working at this problem for about an hour and can't seem to make any progress. Any help would greatly be appreciated.

Homework Statement


Estimate the ground state energy level of a proton in the Al nucleus which has a potential energy of 100 MeV. Compare your answer to that calculated from the infinite square model. The radius of the Al nucleus is 5 fm.

2. The attempt at a solution

I thought that for the first part of the question this equation should be used

En = n2*h2/(8*m*L2)

However, I was getting nowhere close to the answer of 1.72 MeV. For the second part I figure that it would involve Schrodinger's equation and and this equation:

\psi = (2/L)1/2*sin(n*pi*x/L)

Oddly enough using the first equation and using the diameter instead of the radius I got the right answer for the second part of the question of 2.05 Mev; however, I don't think that I solved it correctly.
 
Physics news on Phys.org
The first part isn't an infinite well. The 2nd part is an infinite well, the first equation you listed is the energy levels for an infinite well, that is why it worked. Also, "L" is the width of the well which is the diameter and not the radius (that is why you got the right answer using diameter).

The first part sounds like you will be using a finite potential well. Unless you are learning some other method like the shell model.
 
nickjer said:
The first part isn't an infinite well. The 2nd part is an infinite well, the first equation you listed is the energy levels for an infinite well, that is why it worked. Also, "L" is the width of the well which is the diameter and not the radius (that is why you got the right answer using diameter).

The first part sounds like you will be using a finite potential well. Unless you are learning some other method like the shell model.

Thanks, that explains the second part of the question. Still can't figure out how to do the first part. We have done finite potential well, but not shell. I looked up the equations in my book and think that I should use Schrodinger's time independent equation:

-(ħ/2m)(d2/dx2)Ψ(x)+U(x)Ψ(x)=EΨ(x)

Where I would solve for E. Could I then use this for Ψ(x) :

Ψ(x)=(2/L)1/2sin(pi*x/L)

? If so what value would I use for x, or am I still missing something?
 
Never mind. I just figured it out.

First solve for δ:

δ=ħ/(2*m*U)1/2

Then use δ to solve for Energy, making sure to use diameter, not radius:

E=pi22/(2*m*L2)

---> E = 1.72 MeV
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top