Solve Momentum Problem: Skater w/60kg Mass+3kg Skateboard

  • Thread starter Thread starter assaftolko
  • Start date Start date
  • Tags Tags
    Momentum
AI Thread Summary
The discussion centers on a physics problem involving a skater and a skateboard, focusing on the conservation of momentum when the skater throws weights. Participants debate the assumption of friction between the skater and skateboard, with one arguing that without friction, the skateboard should remain stationary. They clarify that the problem assumes the skater and skateboard move together, despite the lack of explicit mention of friction. Additionally, there is a question about the velocity of the second weight, but it is confirmed that the same conditions apply as with the first throw. Overall, the conversation emphasizes the importance of assumptions in solving momentum-related problems.
assaftolko
Messages
171
Reaction score
0
A skater with a mass of 60 Kg is on a skateboard with a mass of 3 kg. The skater holds in his hands two weights each of them with a mass of 5 kg. The system is at rest and at some moment the skater throws horizontaly one of the weights so that it's velocity in respect to the skater is 8 m/s. After some more time he throws the second weight in the same direction.

What is the velocity of the skater after the second throw?

Well from conservation of momentum you get that for the first throw the momentum of the skater+skateboard after the throw minus the momentum of the first weight after the throw equals to 0. But why is it so clear that the skater and the skateboard will move in the same velocity? They don't say anything about any friction between the skater and the skateboard and if there's no friction then when the skater throws the weight he should move to the other direction in respect to the ground and to the skateboard. The skateboard should stay put because there is no horizontal force acting upon him. Am I wrong?

Also - isn't there something missing about the velocity of the second weight in order to solve the question?
 

Attachments

  • Ex4.jpg
    Ex4.jpg
    7.7 KB · Views: 498
Physics news on Phys.org
assaftolko said:
Well from conservation of momentum you get that for the first throw the momentum of the skater+skateboard after the throw minus the momentum of the first weight after the throw equals to 0.
OK.
But why is it so clear that the skater and the skateboard will move in the same velocity? They don't say anything about any friction between the skater and the skateboard and if there's no friction then when the skater throws the weight he should move to the other direction in respect to the ground and to the skateboard. The skateboard should stay put because there is no horizontal force acting upon him. Am I wrong?
Why would you think that there's no friction between skateboard and skater? You are supposed to assume that they move together, just like they normally would. (But you're correct--if the skateboard where frictionless, it would just stay put. But it would be a pretty useless skateboard!)
Also - isn't there something missing about the velocity of the second weight in order to solve the question?
Assume the same conditions apply for the second throw. Note that the velocity of the thrown weight is given with respect to the skater.
 
Doc Al said:
OK.

Why would you think that there's no friction between skateboard and skater? You are supposed to assume that they move together, just like they normally would. (But you're correct--if the skateboard where frictionless, it would just stay put. But it would be a pretty useless skateboard!)

Well I don't know I mean you can solve the problem even if it's friction free and usually if there's friction they say it... Also if there's static friction I think you need to check if the max value of it can hold the skater in place and so you'll need to have the friction coefficient mue s... So if there's no mentioning of friction by the word or by stating the value of mue s I figgured there isn't any friction...

Assume the same conditions apply for the second throw. Note that the velocity of the thrown weight is given with respect to the skater.

Ok thanks !
 
Last edited by a moderator:
Don't make the problem harder than it is. :smile: (But good thinking though.)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top