Solve Normal & Tangentiel Co-ordinate System Finding Component of Acceleration

AI Thread Summary
The discussion revolves around calculating the y components of velocity and acceleration for a box sliding down a parabolic slope defined by the equation y = 0.05x^2. The y component of velocity was determined to be 1.5 m/s using the derivative of the slope, while the challenge lay in finding the y component of acceleration, which was calculated to be 0.15 m/s². The correct approach involved using the chain rule for acceleration, taking into account both the velocity and the change in velocity along the curve. It was emphasized that the acceleration vector must align with the second derivative of the curve, reflecting the changing slope. The discussion concludes with appreciation for the collaborative effort in solving the problem.
gammastate
Messages
5
Reaction score
0

Homework Statement


The box slides down the slope described by the equation y = 0.05x^2 m , where x is in meters. If the box has components of velocity and acceleration of vx = 3 m/s and ax = -1.5 m/s^2 at x = 5 m determine the y component of the velocity and acceleration



Homework Equations


The answers to the question were 3 m/s and 0.15 m/s^2 respectively. Getting the velocity was easy enough but I'm not sure how to get acceleration. I'm hoping some of you may be able to help.



The Attempt at a Solution


Getting velocity was simply done by taking the derivative of the slope (dy/dx = 0.1x). At x = 5 the slope is 0.5 so the y component of velocity is equal to vy = vx * 0.5 = 1.5 m/s

In terms of getting acceleration there are two components one parallel to the motion and one perpendicular. There is no indication of how the velocity is changing so I know of no of getting the tangential component.

My first attempt was find an acceleration vector such that is perpendicular to the motion (that is wrong because the path is a parabola). My second attempt was to use dynamics at that particular point to determine the y component of acceleration (assuming that gravity had something to do with it). Again, my answer was wrong.

I would be grateful for an explanation as to how to get to the answer 0.15 m/s^2 for the y-component of acceleration.
 
Physics news on Phys.org


u need the chain rule for the acceleration.

ay=vy'=d/dt(0.05*2x* x')

= d/dt( 0.1 x * x')
= 0.1( x' x' + x x'')
=0.1(3*3+5(-1.5))
=0.15
 


The direction of the acceleration vector is going to follow that of the second derivative of the curve (i.e., the slope of the slope). That this is so should be clear by the fact that as the box moves the velocity vector must parallel the slope of the curve, and the curve's slope changes according to how dy/dx changes. Thus the velocity vector changes direction according to the curve d2y/dx2.
 


Thanks Dragon.ENGin & gneill!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top