Solve this Geometry Problem using Alternate Segments

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Geometry
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached.
Relevant Equations
Tangent- chord theorem
This is a textbook problem...clearly angle ##AEG≠ 160^0## there is something wrong with the value given,...I am trying to analyse this...

1636416319751.png
 
Physics news on Phys.org
The solution misuses tangent chord theorem.
Exact ones are
angle EAB= angle BEF
angle AEG= angle ABE
 
anuttarasammyak said:
The solution misuses tangent chord theorem.
Exact ones are
angle EAB= angle BEF
angle AEG= angle ABE
That is correct, ...and exactly my thoughts. We ought to make use of the triangle only in establishing the tangent- chord theorem and not the quadrilateral...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top