What mistake did I make in solving the integral of tan(x)^3?

  • Thread starter Thread starter Goldenwind
  • Start date Start date
  • Tags Tags
    Integral
Goldenwind
Messages
145
Reaction score
0
[SOLVED] Integral of tan(x)^3

Homework Statement


\int tan^3 x dx

The Attempt at a Solution


= \int tanx*tan^2x dx
= \int tanx*(1 - sec^2x) dx
= \int tanx - tanxsec^2x dx
= \int tanx dx - \int tanxsec^2x dx
= \int \frac{sinx}{cosx} dx - \int u du
= -\int \frac{-sinx}{cosx} dx - \frac{1}{2}u^2
= -\int \frac{D(cosx)}{cosx} dx - \frac{1}{2}tanx^2
= -ln(cosx) - \frac{1}{2}tanx^2 + C
= ln(cosx^{-1}) - \frac{1}{2}tanx^2 + C
= ln(\frac{1}{cosx}) - \frac{1}{2}tanx^2 + C
= ln(secx) - \frac{1}{2}tanx^2 + C

Book says I'm wrong. Where is my mistake?
 
Last edited:
Physics news on Phys.org
1 + tan^2 = sec^2 is not equivalent to 1 - sec^2 = tan^2? (step 2) Looks like you missed a negative sign, pretty small error that apparently got magnified later on.
 
...wow... damnit.
lol, thank-you.
 


I'm wondering if this method is also legal.
 

Attachments

  • tan^3.png
    tan^3.png
    29.4 KB · Views: 17,773


shelovesmath said:
I'm wondering if this method is also legal.

yes sure
 


Quinzio said:
yes sure

Ok, but my answer is different. . .
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top