Goldenwind
- 145
- 0
[SOLVED] Integral of tan(x)^3
\int tan^3 x dx
= \int tanx*tan^2x dx
= \int tanx*(1 - sec^2x) dx
= \int tanx - tanxsec^2x dx
= \int tanx dx - \int tanxsec^2x dx
= \int \frac{sinx}{cosx} dx - \int u du
= -\int \frac{-sinx}{cosx} dx - \frac{1}{2}u^2
= -\int \frac{D(cosx)}{cosx} dx - \frac{1}{2}tanx^2
= -ln(cosx) - \frac{1}{2}tanx^2 + C
= ln(cosx^{-1}) - \frac{1}{2}tanx^2 + C
= ln(\frac{1}{cosx}) - \frac{1}{2}tanx^2 + C
= ln(secx) - \frac{1}{2}tanx^2 + C
Book says I'm wrong. Where is my mistake?
Homework Statement
\int tan^3 x dx
The Attempt at a Solution
= \int tanx*tan^2x dx
= \int tanx*(1 - sec^2x) dx
= \int tanx - tanxsec^2x dx
= \int tanx dx - \int tanxsec^2x dx
= \int \frac{sinx}{cosx} dx - \int u du
= -\int \frac{-sinx}{cosx} dx - \frac{1}{2}u^2
= -\int \frac{D(cosx)}{cosx} dx - \frac{1}{2}tanx^2
= -ln(cosx) - \frac{1}{2}tanx^2 + C
= ln(cosx^{-1}) - \frac{1}{2}tanx^2 + C
= ln(\frac{1}{cosx}) - \frac{1}{2}tanx^2 + C
= ln(secx) - \frac{1}{2}tanx^2 + C
Book says I'm wrong. Where is my mistake?
Last edited: