Solving a Complex Integral: Finding the 4

yoleven
Messages
78
Reaction score
1

Homework Statement


\int\intD\left|x\right|dA
D= X2+y2<=a2 where a>0


Homework Equations


\int\stackrel{\Pi/2}{0}\int\stackrel{a}{0} r cos \Theta r dr d\Theta

I hope that's clear...

I evaluate this to \frac{a^3}{3} sin \Theta


sin \Pi/2 = 1

so I get \frac{a^3}{3}

the book says the answer is 4 \frac{a^3}{3}



I can't see where the 4 is coming from.

can some one explain this to me?
 
Physics news on Phys.org
Your domain of [0,pi/2] only includes a quarter of the entire circle.
 
Of course. Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top