Solving an Integral Physics Problem

  • Thread starter Thread starter singular
  • Start date Start date
  • Tags Tags
    Integral Physics
singular
Messages
41
Reaction score
0
I have an integral in a physics problem that I can't solve. How would I go about solving the following:
\int e^{a\left[\left(\frac{x}{b}\right)^{\frac{1}{4}}-1\right]}dx
where a and b are constants
 
Physics news on Phys.org
Hi singular! :smile:

You can make it look slightly less intimidating:
\int e^{a\left[\left(\frac{x}{b}\right)^{\frac{1}{4}}-1\right]}dx\,=\,e^{-a}\int e^{a\left(\frac{x}{b}\right)^{\frac{1}{4}}\,=\,\LARGE e^{-a}\int e^{cx^{\frac{1}{4}}}\,,
where c = a/b^1/4.

Does that help?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top