Solving Boundary Conditions for One-Dimensional Heat Flow Equation

Tomsk
Messages
227
Reaction score
0
I have done most of a question except for the most important part, putting in the boundary conditions, I can't really interpret them.

The question is:

The temperature T of a one dimensional bar whose sides are perfectly insulated obeys the heat flow equation

\frac{\partial T}{\partial t} = \kappa\frac{\partial^2 T}{\partial x^2}

where kappa is a positive constant.

I managed to solve this, with -c^2 as a separation constant, and I got:

T(x,t) = X(x)F(t) = (A_{1} \cos{\frac{cx}{\sqrt{\kappa}}} + A_{2} \sin{\frac{cx}{\sqrt{\kappa}}})e^{-c^2 t}

But then the question says,

The bar extends from x=0 to x=L and is perfectly insulated at x=L. At t<0 the temperature is 0 degC throughout the bar and at t=0 the uninsulated end is placed in contact with a heat bath at 100 degC. Show that the temperature of the bar at subsequent times is given by:

\frac{T}{100} = 1 - \sum_{n=0}^{\infty} \frac{4}{(2n + 1)\pi} \sin{\left(\frac{(2n+1)\pi x}{2L}\right)} exp{\left(-\kappa\left(\frac{(2n+1)\pi}{2L}\right)^{2} t \right)}

And I can't figure out how to get this. I got T(0,t) = 100, therefore A1 e^(-c^2 t) = 100, but that doesn't tell me much. I know I need to sum over c or n at some point, but am I right in thinking you can't sum over c yet because it's a real arbitrary constant, rather than an integer n? That would probably give you the 1 though from n=0. But the problem is with the insulated end x=L, surely if it's insulated it won't lose heat, so the temperature would just go up?
 
Last edited:
Physics news on Phys.org
The maximum temperature at any point is 100 degrees. The temperature at the insulated end will only reach this limit at t = infinity. So you have T(L,inf) = 100.
 
Thanks very much, that looks like it'll sort it. It's funny how its always such a little thing missing... Maybe it's just me.
 
Thanks very much, that looks like it'll sort it. It's funny how its always such a little thing missing... Maybe it's just me.
 
Thanks very much, that looks like it'll sort it. It's funny how its always such a little thing missing... Maybe it's just me.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top