Solving Complex No. Query with Geometric Series and Double Angle Formulae

  • Thread starter Thread starter sachi
  • Start date Start date
  • Tags Tags
    Complex
sachi
Messages
63
Reaction score
1
the first two parts of this question are easy to prove:

1 + cosy/2+ cos(2y)/4 + cos(3y)/8 ... =(4-2cosy)/(5-4cosy)

this can be done using infinite geometric series, and taking the real part.

Then cos(4y) =8({(cosy)^4} -{(cosy)^2}) + 1

which can be done using double angle formulae.

Now we need to solve

x^4 - x^2 + 1/16 = 0

This can be done easily using complex no's, but I'm not sure how to do it using the previous results. I've tried setting cos(4y) = 1/16, and then letting x=cosy, but I end up with some horrible expression involving cos(0.25*arcos(1/16)) which is obviously not what I'm supposed to get.

Thanks
 
Physics news on Phys.org
Try putting \cos(4y) = 1/2.

Carl
 
You notice that:

(cos y)^4 - (cos y)^2 + (1/8)(1 - cos 4y) = 0?
 
thanks v. much. i was probably suffering some sort of miniature brain death by putting cosy = 1/16 (instead of cosy = 1/2!) The trig solution and the completing the square solutions match up as well, so it all work out.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top