Solving equation using diagonozation

  • Thread starter Thread starter transgalactic
  • Start date Start date
transgalactic
Messages
1,386
Reaction score
0
Last edited by a moderator:
Physics news on Phys.org
It's pretty clear that equation has no solution over the real numbers.

To summarize, you arrived at D= P^{-1}AP where D is the diagonal matrix
\begin{bmatrix}4 &amp; 0 \\ 0 &amp; -4\end{bmatrix}<br /> Since A^2= P^{-1}A^2P, we also have \sqrt{A}= P^{-1}\sqrt{D}P. Of course, <br /> \sqrt{D}= \begin{bmatrix}2 &amp;amp; 0 \\ 0 &amp;amp; 2i\end{bmatrix}
 
thanks :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top