Solving Ferromagnet Ques: Get G_q(\omega) from (hbarw-h)G_ff'(\omega)

  • Thread starter Thread starter Petar Mali
  • Start date Start date
Petar Mali
Messages
283
Reaction score
0

Homework Statement


How from

(\hbar\omega-h)G_{f,f'}(\omega)=i2\langle\hat{S}_f^z\rangle\delta_{f,f'}+\langle\hat{S}^z\rangle\sum_gI(f-g)\{G_{f,f'}(\omega)-G_{g,f'}(\omega)\}

get

G_{q}(\omega)=\frac{i\hbar}{2\pi}\frac{2\langle\hat{S}^z\rangle}{\hbar\omega-h-\epsilon(q)}

where

G_{f,f'}(\omega)=\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{f}-\vec{f'})}G_{\vec{q}}(\omega)

\delta_{f,f'}=\frac{1}{N}\sum_{q}e^{i\vec{q}(\vec{f}-\vec{f'})}

Homework Equations

The Attempt at a Solution



I really don't have a clue what to do. h is constant.

If I use that spin don't depands of indices

\langle\hat{S}^z\rangle=\langle\hat{S}_g^z\rangle=S\sigma

and use

(\hbar\omega-h)\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{f}-\vec{f'})}G_{\vec{q}}(\omega)=i2S\sigma\frac{1}{N}\sum_{q}e^{i\vec{q}(\vec{f}-\vec{f'})}+S\sigma\sum_gI(f-g)\{\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{f}-\vec{f'})}G_{\vec{q}}(\omega)-\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{g}-\vec{f'})}G_{\vec{q}}(\omega)\}What now?
 
Last edited:
Physics news on Phys.org
Petar Mali said:

Homework Statement


How from

(\hbar\omega-h)G_{f,f'}(\omega)=i2\langle\hat{S}_f^z\rangle\delta_{f,f'}+\langle\hat{S}^z\rangle\sum_gI(f-g)\{G_{f,f'}(\omega)-G_{g,f'}(\omega)\}

get

G_{q}(\omega)=\frac{i\hbar}{2\pi}\frac{2\langle\hat{S}^z\rangle}{\hbar\omega-h-\epsilon(q)}

where

G_{f,f'}(\omega)=\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{f}-\vec{f'})}G_{\vec{q}}(\omega)

\delta_{f,f'}=\frac{1}{N}\sum_{q}e^{i\vec{q}(\vec{f}-\vec{f'})}


Homework Equations







The Attempt at a Solution



I really don't have a clue what to do. h is constant.

If I use that spin don't depands of indices

\langle\hat{S}^z\rangle=\langle\hat{S}_g^z\rangle=S\sigma

and use

(\hbar\omega-h)\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{f}-\vec{f'})}G_{\vec{q}}(\omega)=i2S\sigma\frac{1}{N}\sum_{q}e^{i\vec{q}(\vec{f}-\vec{f'})}+S\sigma\sum_gI(f-g)\{\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{f}-\vec{f'})}G_{\vec{q}}(\omega)-\frac{1}{N}\sum_{\vec{q}} e^{i\vec{q}(\vec{g}-\vec{f'})}G_{\vec{q}}(\omega)\}


What now?


What is the definition of I(f-g) ? We need that to make any progress.
 
I is exchange interraction!

\sum_f I(f)e^{-i\vec{g}\cdot\vec{f}}=J(\vec{q})

\sum_g I(f-g)=\sum_{\vec{\lambda}}I(\vec{\lambda})=J(0)\equiv J_0
 
Any idea?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top