Solving for Φ(k) in Quantum Fourier Transform with ψ(x,0)=e^(-λ*absvalue(x))

  • Thread starter Thread starter chris2020
  • Start date Start date
  • Tags Tags
    Fourier Quantum
AI Thread Summary
The discussion revolves around finding Φ(k) for the given wave function ψ(x,0)=e^(-λ*absvalue(x)). The integral for Φ(k) is set up using the Fourier transform, with a focus on handling the absolute value in the exponent. Participants suggest simplifying the integral by considering the properties of even and odd functions, which can streamline the calculations. There is a mention of a potential typo in the mathematical expressions that could affect the solution. Overall, the conversation emphasizes the importance of correctly setting up the integral and exploring alternative approaches for solving the problem.
chris2020
Messages
8
Reaction score
0

Homework Statement


Assume ψ(x,0)=e^(-λ*absvalue(x)) for x ± infinity, find Φ(k)

Homework Equations


Φ(k)=1/√(2π)* ∫e(-λ*absvalue(x))e(-i*k*x)dx,-inf, inf[/B]

The Attempt at a Solution

, my thought was Convert the absolute value to ± x depending on what of the number line was being integrated.[/B]

U=i*k*x
du/(i*k)=dx

1/√(2π)*∫e-λ*√(u2/(i*k)2)*e(-u)du,-inf,inf

Now fixing abs value

1/((2π)*(i*k))*∫eλ/(i*k)*ue(-u),du,-inf,o

the integrand for one half of the number line looks like:

E(u*(λ/(ik)-1)

For which i get: after limits are taken for that half of the integral

(1/((λ/ik)-1))

Then similar integral for other half

Is this the right track or am i totally off?

 
Physics news on Phys.org
Hello and welcome to PF!

Your work looks OK. I don't think you need to make the substitution u = ikx. Looks like a typo in one place where you left out the square root for the ##2 \pi## factor.

If you feel more comfortable with working with real functions, write ##e^{-ikx} = \cos (kx) - i \sin (kx)##. You can then check to see if the resulting integrands are even or odd functions over the interval ##-\infty < x < \infty##.
 
yea i was thinking that route also but i forgot about about the even or odd shortcut

Thanks!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top