Solving Gamma Matrices Identity Problems in Particle Physics

Safinaz
Messages
255
Reaction score
8
Hi all,
I make some
exercises in particle physics but I'm stuck in two problems related to Gamma matrices identities,
First: the Fermion propagator ## \frac {i } { /\!\!\!p - m} = i \frac { /\!\!\!p + m } { p^2 - m^2} ## So how ##/ \!\!\!\!p ^2 = p^2 ## ? Where ## /\!\!\!p = \gamma_\mu p^\mu ##.

I think ##/ \!\!\!\!p ^2 = \gamma_\mu p^\mu \gamma_\nu p^\nu =
\gamma_\mu p^\mu \gamma_\nu g^{\mu\nu} p_\mu = \gamma_\mu \gamma^\mu p^2 = 4 p^2 ##, so I got a factor 4 ! What's wrong here?

Second: It's related to the helicity operator, ## h= S . \bf{p} ## ( where S is 2 by 2 matrix, with ##\sigma^i ## on the diagonal ), that as mentioned in a reference as [arXiv:1006.1718], it commutes with the Dirac Hamiltonian ## H = \gamma^0 ( \gamma^i p^i + m ) ## equ. (3.3), due to Gamma matrices anticommutation relation, but this isn't clear for me at all..

Thanx
 
Last edited:
Physics news on Phys.org
I'm not sure about the second one, but on the first one, you've just been sloppy with your summation indices, and you've used μ as a summation index twice. If you do what you were trying to do correctly, you get:
\not p \not p = \gamma_\mu p^\mu \gamma_\nu p^\nu = \gamma_\mu p^\mu \gamma_\nu g^{\nu \lambda}p_\lambda = \gamma_\mu p^\mu \gamma^\lambda p_\lambda= ?

An easier way to see it is as follows:

\not p \not p= \frac{1}{2}(\gamma^\mu p_\mu \gamma^\nu p_\nu + \gamma^\nu p_\nu \gamma^\mu p_\mu)= \frac{1}{2}p_\mu p_\nu(\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu) = \frac{1}{2}p_\mu p_\nu 2 g^{\mu \nu} = p_\mu p^\mu = p^2
 
For the first question:
##/ \!\!\!\!p ^2 = / \!\!\!\!p ^2## so by simple relabling
## \gamma_\mu p^\mu \gamma_\nu p^\nu = \gamma_\nu p^\nu \gamma_\mu p^\mu ##
now ##/ \!\!\!\!p ^2 = \frac{1}{2}( / \!\!\!\!p ^2 + / \!\!\!\!p ^2) ##
## \gamma_\mu p^\mu \gamma_\nu p^\nu = \frac{1}{2}( \gamma_\mu p^\mu \gamma_\nu p^\nu + \gamma_\nu p^\nu \gamma_\mu p^\mu) = \frac{1}{2}\left\{ \gamma_\mu,\, \gamma_\nu\right\}p^\nu p^\mu##
since ##[p^\nu, p^\mu ] = 0 ##
You should be able to finish the last one or two steps from here.

Edit: I didn't refresh my browser to see someone beat me to it before posting. Oh well.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top