buffordboy23
- 545
- 2
I see that the formula for this general integral is
\int^{+\infty}_{-\infty} x^{2}e^{-Ax^{2}}dx=\frac{\sqrt{\pi}}{2A^{3/2}}
However, I am not getting this form with my function. I transformed the integral using integration by parts so that I could use another gaussian integral that I knew at the time.
\int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx
Let u = x^{2} \rightarrow du = 2x dx
and
dv = e^{\frac{-2amx^{2}}{\hbar}}dx \rightarrow v = -\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}
Therefore,\int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx = \left x^{2}\left(-\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}\right)\right|^{+\infty}_{-\infty}-\int^{+\infty}_{-\infty}\left(-\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}\right)2xdxThe middle term equals zero, so letting z =\left(\sqrt{2am/\hbar}\right)x \rightarrow dx= \left(\sqrt{\hbar/2am}\right)dz gives\int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx = \frac{\hbar}{2am}\int^{+\infty}_{-\infty}e^{\frac{-2amx^{2}}{\hbar}}\right)dx=\left(\frac{\hbar}{2am}\right)^{3/2}\int^{+\infty}_{-\infty}e^{-z^{2}}dz =\left(\frac{\hbar}{2am}\right)^{3/2}\sqrt{\pi}
which is not in the appropriate form--missing a factor of 1/2. I can't see where I am going wrong. Any thoughts?
\int^{+\infty}_{-\infty} x^{2}e^{-Ax^{2}}dx=\frac{\sqrt{\pi}}{2A^{3/2}}
However, I am not getting this form with my function. I transformed the integral using integration by parts so that I could use another gaussian integral that I knew at the time.
\int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx
Let u = x^{2} \rightarrow du = 2x dx
and
dv = e^{\frac{-2amx^{2}}{\hbar}}dx \rightarrow v = -\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}
Therefore,\int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx = \left x^{2}\left(-\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}\right)\right|^{+\infty}_{-\infty}-\int^{+\infty}_{-\infty}\left(-\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}\right)2xdxThe middle term equals zero, so letting z =\left(\sqrt{2am/\hbar}\right)x \rightarrow dx= \left(\sqrt{\hbar/2am}\right)dz gives\int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx = \frac{\hbar}{2am}\int^{+\infty}_{-\infty}e^{\frac{-2amx^{2}}{\hbar}}\right)dx=\left(\frac{\hbar}{2am}\right)^{3/2}\int^{+\infty}_{-\infty}e^{-z^{2}}dz =\left(\frac{\hbar}{2am}\right)^{3/2}\sqrt{\pi}
which is not in the appropriate form--missing a factor of 1/2. I can't see where I am going wrong. Any thoughts?
Last edited: