rasko
- 6
- 0
A molecule of hydrogen. We assume that the only possible states of
its two electrons (indistinguishable) are |A\uparrow\rangle,<br /> |A\downarrow\rangle, |B\uparrow\rangle and |B\downarrow\rangle
(A=1s-orbital at atom A, B=1s-orbital at atom B).
Formulate the 6 basis functions using the four possible single
particle states above. (Don't forget the Pauli-principle!)
Here is my solution:
Total spin S=1 or 0.
|1,1\rangle=|A\uparrow\rangle|B\uparrow\rangle,
|1,0\rangle=\frac{1}{\sqrt{2}}(|A\uparrow\rangle|B\downarrow\rangle+|A\downarrow\rangle|B\uparrow\rangle),
|1,-1\rangle=|A\downarrow\rangle|B\downarrow\rangle,
|0,0\rangle=\frac{1}{\sqrt{2}}(|A\uparrow\rangle|B\downarrow\rangle-|A\downarrow\rangle|B\uparrow\rangle).
Are they basis functions? There should be 6 but I got only 4.
its two electrons (indistinguishable) are |A\uparrow\rangle,<br /> |A\downarrow\rangle, |B\uparrow\rangle and |B\downarrow\rangle
(A=1s-orbital at atom A, B=1s-orbital at atom B).
Formulate the 6 basis functions using the four possible single
particle states above. (Don't forget the Pauli-principle!)
Here is my solution:
Total spin S=1 or 0.
|1,1\rangle=|A\uparrow\rangle|B\uparrow\rangle,
|1,0\rangle=\frac{1}{\sqrt{2}}(|A\uparrow\rangle|B\downarrow\rangle+|A\downarrow\rangle|B\uparrow\rangle),
|1,-1\rangle=|A\downarrow\rangle|B\downarrow\rangle,
|0,0\rangle=\frac{1}{\sqrt{2}}(|A\uparrow\rangle|B\downarrow\rangle-|A\downarrow\rangle|B\uparrow\rangle).
Are they basis functions? There should be 6 but I got only 4.