Solving Hydrogen Molecule Basis Functions

  • Thread starter Thread starter rasko
  • Start date Start date
  • Tags Tags
    Hydrogen Molecule
rasko
Messages
6
Reaction score
0
A molecule of hydrogen. We assume that the only possible states of
its two electrons (indistinguishable) are |A\uparrow\rangle,<br /> |A\downarrow\rangle, |B\uparrow\rangle and |B\downarrow\rangle
(A=1s-orbital at atom A, B=1s-orbital at atom B).
Formulate the 6 basis functions using the four possible single
particle states above. (Don't forget the Pauli-principle!)


Here is my solution:

Total spin S=1 or 0.
|1,1\rangle=|A\uparrow\rangle|B\uparrow\rangle,
|1,0\rangle=\frac{1}{\sqrt{2}}(|A\uparrow\rangle|B\downarrow\rangle+|A\downarrow\rangle|B\uparrow\rangle),
|1,-1\rangle=|A\downarrow\rangle|B\downarrow\rangle,
|0,0\rangle=\frac{1}{\sqrt{2}}(|A\uparrow\rangle|B\downarrow\rangle-|A\downarrow\rangle|B\uparrow\rangle).

Are they basis functions? There should be 6 but I got only 4.
 
Physics news on Phys.org
You've written down spin triplet and spin singlet states, and those would be all you had if your single particle states were \left|\uparrow\right&gt; and \left|\downarrow\right&gt;, but your states aren't labelled by just the spin - you have labels A and B too. However, all of the states you have written are pairs A and B. What about AA or BB pairs?
 
Hi, Mute. I think there should be no AA or BB pairs. Because at the same time A or B has only one state.
 
Why do you think that? It's not given anywhere in the problem statement that each atom can only have one electron.

Remember that the Pauli exclusion principle only rules out two indist. particles in the *exact* same state...
 
2Tesla and Mute, thanks. I understand now.

|0,0>=|A up>|A down>
|0,0>=|B up>|B down>

Thanks u for ur tips.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top