Solving Integral Question: f(x) = \int^{x+1}_{x} e^{-t^2} dt

  • Thread starter Thread starter daniel_i_l
  • Start date Start date
  • Tags Tags
    Integral
daniel_i_l
Gold Member
Messages
864
Reaction score
0

Homework Statement


f(x) = \int^{x+1}_{x} e^{-t^2} dt
1) Where does f have a derivative?
2) Prove that f(x)>0 for all x in R.
3) Find the segments of R where f goes up and down and the extream points.

Homework Equations





The Attempt at a Solution



1) The integral of a continues function has a derivative everywhere.

2) e^{-t^2} has a miniumum (m) in [x,x+1] and so
m(x+1 -x) = m <= \int^{x+1}_{x} e^{-t^2} dt
But e^x > 0 for all x and so m>0.

3)If F(x) = \int^{x}_{0} e^{-t^2} dt
Then f(x) = -F(x) + F(x+1) and so
f'(x) =-e^{-x^2} + e^{-(x+1)^2} = e^{-x^2} ( e^{-(2x+1)} -1)
And so f'(x)=0 only when x= -1/2. For all x>-1/2 the f'(x) < 0 and the function goes down, and for all x<-1/2 f'(x)>0 and the function goes up.

Is that right?
Thanks.
 
Physics news on Phys.org
I don't see any problems.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top