- #1

Logarythmic

- 281

- 0

I have used three constraints whereas one is [tex]l_1 + l_2 = l[/tex] and found three equations of motion:

[tex]2 \dot{l_1} \dot{\theta_1} + l_1 \ddot{\theta_1} = 0[/tex]

[tex](l - l_1)\ddot{\theta_2} - 2 \dot{l_1} \dot{\theta_2} + g \sin{\theta_2} = 0[/tex]

[tex](m_1 + m_2) \ddot{l_1} - m_1 l_1 \dot{\theta_1}^2 + m_2 ((l - l_1) \dot{\theta_2}^2 + g \cos{\theta_2}) = 0[/tex]

First, can this be correct? Second, how do I solve these?

I have also found one conserved quantity,

[tex]\frac{\partial L}{\partial \theta_1} = 0[/tex]

wich says that the generalized momentum is conserved. How can I find another conserved quantity?