Solving Static Forces/Torque Homework Problem

  • Thread starter Thread starter khemist
  • Start date Start date
  • Tags Tags
    Static
khemist
Messages
247
Reaction score
0

Homework Statement



Two sticks are connected, with hinges, to each other and to a wall. The
bottom stick is horizontal and has length L, and the sticks make an angle
of θ with each other, as shown in Fig. 2.38. If both sticks have the same
mass per unit length, ρ, find the horizontal and vertical components
of the force that the wall exerts on the top hinge, and show that the
magnitude goes to infinity for both θ → 0 and θ → π/2

Homework Equations



F=ma
T=RF

The Attempt at a Solution



I drew my FBD as follows. The wall and two sticks form a right triangle. Stick 1 (at the angle) has mg pointing down, a force at the top hinge at some angle (F1x, F1y), and a force at the bottom hinge (F2x, F2y), where the two sticks meet, again at some angle. The bottom stick (horizontal, stick 2) has the normal force from the wall (N), pointing parallel to the stick, and the force of mg pointing down.

I attempted to write down the sum of the forces for each stick. For stick 1,
Fx = F1x + F2x = 0
Fy = F1y + F2y = 0

Stick 2:
Fx = N = 0
Fy = mg + F2x

To find the torque, I picked the hinge where the two sticks meet as my rotation origin, and my positive rotation is in the counter clockwise direction.
T = \frac{cos\phi}{L}(\frac{L}{2}m_{2}g + sin\phi m_{1}g\frac{L}{2cos\phi} - F_{1}(\frac{L}{cos\phi}))

This is as far as I have gotten. I am pretty sure that my forces are not labeled correctly. Can anyone point me in the right direction? Thanks!
 
Physics news on Phys.org
Where's the diagram?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top