Solving the heat equation in 1D

Click For Summary
The discussion focuses on solving the initial value problem for the heat equation in one dimension, utilizing the fundamental solution and specific initial conditions. The solution is expressed through an integral involving the fundamental solution and the initial condition, leading to a simplified form of the solution. Additionally, the discussion addresses the solution of Burgers' equation with viscosity, derived from the heat equation solution. It emphasizes the importance of correctly incorporating the initial condition within the integral. The final conclusions confirm that the derived solutions are valid under the given conditions.
docnet
Messages
796
Reaction score
488
Homework Statement
solve the heat equation and the Burger's equation.
Relevant Equations
$$\begin{cases}
\partial_t\phi-\partial^2_x\phi=0 & \text{in}\quad (0,\infty)\times R \\ \phi(0,\cdot)=\psi & \text{on}\quad \{t=0\}\times R
\end{cases}$$
Screen Shot 2021-03-25 at 11.51.48 PM.png

(3) To solve the initial value problem
$$\begin{cases}
\partial_t\phi-\partial^2_x\phi=0 & \text{in}\quad (0,\infty)\times R \\ \phi(0,\cdot)=\psi & \text{on}\quad \{t=0\}\times R
\end{cases}$$
we use the fundamental solution in 1D $$\Phi_1(t,x)=\frac{1}{\sqrt{4\pi t}}exp\Big(-\frac{x^2}{4t}\Big)$$ and the formula
$$\phi(t,x)=\int_R\Phi(t,x-y)u_0(y)dy$$
and
$$\psi=exp\Big(-\int\frac{g(x)}{2}dx\Big)$$
to give
$$\phi(t,x)=exp\Big(-\int\frac{g(x)}{2}dx\Big)\int_R\Big[ \frac{1}{\sqrt{4\pi t}}exp\Big(-\frac{(x-y)^2}{4t}\Big)\Big]dy$$By the definition of the fundamental solution ##\Phi##, the above integral converges to ##1## giving $$\phi(t,x) =exp\Big(-\int\frac{g(x)}{2}dx\Big)$$
(4) The solution ##u## of the Burger's equation with viscosity is given by the substitution formula
$$u(t,x)=\frac{-2}{\phi(t,x)}\partial_x\phi(t,x)$$
$$=\frac{-2}{exp\Big(-\int\frac{g(x)}{2}dx\Big)}\partial_x\Big[ exp\Big(-\int\frac{g(x)}{2}dx\Big)\Big]$$
$$=2\partial x \Big[\int\frac{g(x)}{2}dx\Big]=\boxed{g(x)}$$
 
Physics news on Phys.org
Your ##\phi## is not a solution to the heat equation. Note that when you solve the heat equation you need to insert the initial condition as a function of the integration variable. This will mean that you cannot take it outside the integral in the fashion you have done.
 
Orodruin said:
Your ##\phi## is not a solution to the heat equation. Note that when you solve the heat equation you need to insert the initial condition as a function of the integration variable. This will mean that you cannot take it outside the integral in the fashion you have done.

Thanks! after some sleep, I go through the problem again to find the same answer by chance.

(3) To solve the following initial value problem
$$\begin{cases}
\partial_t\phi-\partial^2_x\phi=0 & \text{in}\quad (0,\infty)\times R \\ \phi(0,\cdot)=\psi & \text{on}\quad \{t=0\}\times R
\end{cases}$$
we use the fundamental solution in 1D $$\Phi_1(t,x)=\frac{1}{\sqrt{4\pi t}}exp\Big(-\frac{x^2}{4t}\Big)$$ and the formula
$$\phi(t,x)=\int_R\Phi(t,x-y)u_0(y)dy$$
and
$$ \phi(0,x)=exp(-\int\frac{g}{2}dx)=\boxed{ C\cdot exp\big({{-\frac{G(x)}{2}}\big)}}$$
to give
$$\phi(t,x)=\int_R\Big[ \frac{1}{\sqrt{4\pi t}}exp\Big(-\frac{(x-y)^2}{4t}\Big)\cdot C\cdot exp\Big({-\frac{G(y)}{2}}\Big)\Big]dy$$
$$=C\cdot\int_R\Big[ \frac{1}{\sqrt{4\pi t}} exp\Big(-\frac{(x-y)^2}{4t}-\frac{G(y)}{2}\Big)\Big]dy$$
The above integral converges to (hope no one asks me how i know this)
$$\phi(t,x)=C\cdot exp\Big(-\frac{G(y)}{2}\Big)$$
(4) The solution ##u## of the Burger's equation with viscosity is given by the substitution formula
$$u(t,x)=\frac{-2}{\phi(t,x)}\partial_x\phi(t,x)$$
$$\Rightarrow\frac{-2}{C\cdot exp\Big(-\frac{G(y)}{2}\Big)}\partial_x\Big[ C\cdot exp\Big(-\frac{G(y)}{2}\Big)\Big]$$
$$=2\cdot \partial x \Big[-\frac{G(y)}{2}+C\Big]\Rightarrow\boxed{u(t,x)=g(x)}$$
 
docnet said:
The above integral converges to (hope no one asks me how i know this)
How do you know this? 😏
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...