Solving triple integrals in a tetrahedron: How do I get started?

AI Thread Summary
To solve the triple integral of f(x,y,z) = 2x + 3y over the tetrahedron bounded by the coordinate planes and the plane 2x + 3y + z = 6, begin by sketching the solid and its projection on the x-y plane. Rearranging the plane equation for z gives z = 6 - 2x - 3y. The limits for the innermost integral with respect to z are from 0 to 6 - 2x - 3y. The second integral with respect to y has limits from 0 to 2 - (2/3)x, and the outer integral with respect to x ranges from 0 to 3. The final setup for the triple integral is integral (x=0 to 3) integral (y=0 to 2-(2/3)x) integral (z=0 to 6-2x-3y)(2x+3y)dzdydx.
Dx
Compute triple integral f(x,y)dV given f(x,y,z)=2x+3y. T is the tetrahedron bounded by the coordinate planes and first octant part of the plane with equation 2x + 3y + z = 6.

how do i solve for this, can someone get me started halfway, please?
Dx
 
Mathematics news on Phys.org
I don't know if you have solved this problem already, but here goes:

The first step you will want to do is draw two diagrams, one of the solid, and one projection of it on the x-y plane.

Then solve the equation for z (or x or y whichever is going to produce the easiest integral outcome).

In this case I would go for the z solution:
z=2x+3y-6
Then determine the axis intersections in order to find the integral limits.
Set up your triple integral, solve.
 
Last edited:
The "innermost" integral will be with respect to z (dz) and will have limits z= 0 to z= 6- 2x- 3y.

"projecting" down to the x,y plane (z= 0) gives the line where the plane 2x+ 3y+ z= 6 crosses the x,y plane: 2x+ 3y= 6. We need to integrate over the triangle with edges x=0, y=0, 2x+ 3y= 6.

Solving for y, y= 2- (2/3)x. The second integral will be with respect to y (dy) and will have limits y= 0 and y= 2-(2/3)x.

Finally, project to the x-axis itself. The line 2x+3y= 6 crosses the x-axis when y= 0: 2x= 6 or x= 3. The final integral will be with respect to x (dx) and will have limits x= 0, x= 3.

The triple integral you want is

integral (x=0 to 3) integral (y=0 t0 2-(2/3)x) integral (z= 0 to 6- 2x+3y)(2x+3y)dzdydx.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top