"Sound Intensity Decreases with Distance

  • Thread starter Thread starter Aoiumi
  • Start date Start date
  • Tags Tags
    Intensity Sound
AI Thread Summary
The discussion focuses on calculating sound intensity at different distances, specifically how the intensity decreases from 90 dB at 1 meter to 70 dB at 10 meters. Participants emphasize the importance of understanding the relationship between sound intensity and surface area, noting that intensity decreases with the square of the distance from the source. The relevant equations for power in decibels are highlighted, particularly the formula for power ratios in decibels. The conversation also clarifies that decibels represent power ratios and explains the concept of power flux in relation to sound. Overall, the key takeaway is that sound intensity decreases logarithmically with distance due to the geometry of sound propagation.
Aoiumi
Messages
23
Reaction score
0

Homework Statement


At 1 m away from the source of a sound, the intensity of the sound is 90 dB. At 10 m away the intensity is…?

The answer is 70 dB but I don't know how...

Homework Equations



I = Power/Area


The Attempt at a Solution


My thought was to set up the equations:

90dB = P/4pi
XdB = 4pir^2

I'm not sure where to go from here.
 
Physics news on Phys.org
Aoiumi said:

Homework Statement


At 1 m away from the source of a sound, the intensity of the sound is 90 dB. At 10 m away the intensity is…?

The answer is 70 dB but I don't know how...

Homework Equations



I = Power/Area


The Attempt at a Solution


My thought was to set up the equations:

90dB = P/4pi
XdB = 4pir^2

I'm not sure where to go from here.

You are on the right track.

What is the ratio of the surface area of the two spheres?

And what is the equation for power in dB based on the ratio of intensities?
 
  • Like
Likes 1 person
The ratio of the surface area of the two spheres would be

4pi/4pi(10)^2 or
1/100

I'm not sure how to set up the quation for power in dB based on the ratio of intensities

I0/I = (p1/a1)/(p2/a2)?
 
Aoiumi said:
The ratio of the surface area of the two spheres would be

4pi/4pi(10)^2 or
1/100

I'm not sure how to set up the quation for power in dB based on the ratio of intensities

I0/I = (p1/a1)/(p2/a2)?

You use dB to handle large ratios.

For voltage, V(dB) = 20 * log(V/Vo) where Vo is some reference voltage

For power P(dB) = 10 * log(P/Po) where Po is some reference power

So for this question, you will be using the 2nd equation...
 
First, allow me to offer some general guidance regarding decibels.

Decibels always imply power ratios. Always. No matter what.

The decibel is defined, relating the ratio of two powers P2 and P1 as:

10 \log_{10} \left( \frac{P_2}{P_1} \right)
So one might ask, "well then how can we use decibels with voltage? Voltage isn't power," or "where does the '20' come from when we use ratios of voltages?"

The answer is that we make the pseudo-assumption that the input and output impedances of a given circuit are equal; i.e., Rin = Rout = R. (By the way, this is a realistic pseudo-assumption, since it is often the case for circuits that are optimized for maximum power transfer, signal to noise ratio, etc.)

Also we know that the power through a resistor is V2/R.

Plugging that into our decibel equation, and noting that log(x2) = 2logx,

10 \log_{10} \left( \frac{ \frac{V_2^2}{ R}}{ \frac{V_1^2}{ R}} \right) = 10 \log_{10} \left( \frac{V_2^2}{V_1^2} \right) = 10 \log_{10} \left( \left[ \frac{V_2}{V_1} \right]^2 \right) = 20 \log_{10} \left( \frac{V_2}{V_1} \right)

----------------------------

Now allow me to move on to something more specific: Sound/acoustics.

Sound decibels are defined in terms of power flux* ratios.

*(Power flux is power through a unit area -- you may think of the unit area as the cross sectional area of your ear canal if it helps visualize it -- or if you want to stick with SI units, the sound power propagating through a square meter.)

The reference power flux is typically defined as the power flux that corresponds to the human threshold of hearing.

If we define the reference power flux, that of the threshold of human hearing, as \Phi_{ref}, and the power of the source as P, then we know from the problems statement that

90 \ \mathrm{dB} = 10 \log_{10} \left( \frac{\frac{P}{A_1}}{\Phi_{ref}} \right)
where A_1 is the surface area of a circle with a 1 meter radius. So now the question is, what is

10 \log_{10} \left( \frac{\frac{P}{A_{10}}}{\Phi_{ref}} \right) \ ,
where A_{10} is the surface area of a circle with radius 10 meters?

Hint: There is an easy way to do this such that you won't even need a calculator to solve this problem (you might even be able to solve it in your head). Do this by noting that log(x/y) = logx - logy, and asking yourself, Does the area of a circle increase proportionally with the radius, or does it increase proportionally with the square of the radius?" :wink:
 
Last edited:
Thanks for the clarification, collinsmark. Nice post :smile:
 
  • Like
Likes 1 person
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top