maccyjj
- 2
- 0
Homework Statement
Prove that the spacetime interval
-(ct)^{2} + x^{2} + y^{2} + z^{2}
is invariant.
[/itex]<br /> <h2>Homework Equations</h2><br /> Lorentz transformations<br /> \Deltax&#039; = \gamma(\Deltax-u\Deltat)<br /> \Deltay&#039; = \Deltay<br /> \Deltaz&#039; = \Deltaz<br /> \Deltat&#039; = \gamma(\Deltat-u\Deltax/c^{2})<br /> <br /> <br /> <h2>The Attempt at a Solution</h2><br /> I have tried to prove that \Delta S = \Delta S&#039;<br /> So first I said that \Delta S&#039; = - \Delta (ct&#039;)^{2} + \Delta (x&#039;)^{2} + \Delta (y&#039;)^{2} + \Delta (z&#039;)^{2}<br /> <br /> And inserted all the Lorentz Transformations above into the above formula.<br /> <br /> I end up simplyfying it to get<br /> <br /> \gamma^{2} (x^{2} + u^{2}t^{2} - c^{2}t^{2} - \frac{u^{2}x^{2}}{c^{2}}) + y^{2} + z^{2}<br /> <br /> How does this equal S = - \Delta (ct)^{2} \Delta (x)^{2} + \Delta (y)^{2} + \Delta (z)^{2} ? I can't see a way to get rid of the extra terms to get this simple function.<br /> <br /> Any help would be really really great!