Special relativity - scattering angle

Aleolomorfo
Messages
70
Reaction score
4

Homework Statement


Finding the maximum scattering angle of a particle whose mass in ##m_1## which hits with relativistic velocity ##v## a particle at rest with mass ##m_2<m_1##.

The Attempt at a Solution


I've written the 4-momenta (p before the collision, k after the collision and the z-axis is along the direction of the incident particle):
$$p_1=(m_1\gamma,0,0,m_1\gamma v)$$
$$p_2=(m_2,0,0,0)$$
$$k_1=(E,0,\sqrt{E^2-m^2_1}\sin{\theta},\sqrt{E^2-m^2_1}\cos{\theta})$$
For ##k_2## the components are not important, it's important that ##k^2_2=m^2_2##
Then I've used the conservation of 4-momentum ##p_1+p_2=k_1+k_2##, then ##k_2=p_1+p_2-k_1##, then ##k^2_2=p^2_1+p^2_2+k^2_1+2p_1p_2-2p_1k_1-2p_2k_1##. After calculations I've found:
$$\cos{\theta}=\frac{m^2_1+m_1m_2\gamma-2E(m_1\gamma+m_2)}{m_1\gamma v\sqrt{E^2-m^2_1}}$$.
Then I've taken the derivative ##\frac{d(\cos{\theta})}{dE}## and put it equal to 0. However, I've found an equation quite difficult to solve and I think it's wrong.
I think the way I set up the problem is not incorrect, but maybe there is a easier way or some trick to reduce calcus.
 
Physics news on Phys.org
Aleolomorfo said:
Then I've used the conservation of 4-momentum ##p_1+p_2=k_1+k_2##, then ##k_2=p_1+p_2-k_1##, then ##k^2_2=p^2_1+p^2_2+k^2_1+2p_1p_2-2p_1k_1-2p_2k_1##. After calculations I've found:
$$\cos{\theta}=\frac{m^2_1+m_1m_2\gamma-2E(m_1\gamma+m_2)}{m_1\gamma v\sqrt{E^2-m^2_1}}$$.
Check the overall sign of the right hand side of the equation for ##\cos \theta## and also check if the factor of 2 in the numerator is correct.

Then I've taken the derivative ##\frac{d(\cos{\theta})}{dE}## and put it equal to 0. However, I've found an equation quite difficult to solve and I think it's wrong.
I think the way I set up the problem is not incorrect, but maybe there is a easier way or some trick to reduce calcus.
With the corrections mentioned above, it will work out if you slog through it. I don't know of a clever trick to reduce the algebra. Maybe someone else can show us a better way.
 
Last edited:
  • Like
Likes Aleolomorfo
TSny said:
Check the overall sign of the right hand side of the equation for ##\cos \theta## and also check if the factor of 2 in the numerator is correct.

With the corrections mentioned above, it will work out if you slog through it. I don't know of a clever trick to reduce the algebra. Maybe someone else can show us a better way.

Thank you for your help. The worst is when you make a mistake at the beginning. My result is ##\cos{\theta_{max}}=\sqrt{1-\frac{m^2_2}{m^2_1}}##, I think it's correct or at least is plausible.
 
Aleolomorfo said:
Thank you for your help. The worst is when you make a mistake at the beginning. My result is ##\cos{\theta_{max}}=\sqrt{1-\frac{m^2_2}{m^2_1}}##, I think it's correct or at least is plausible.
Yes, that's the correct answer. It's even nicer when expressed in terms of ##\sin \theta##. Since the answer is independent of the speed of the incoming particle, the result is the same as the nonrelativistic, Newtonian result.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top