Specific Heat Capacity of a metal bar placed into water

Click For Summary
SUMMARY

The discussion focuses on calculating the specific heat capacity (shc) of a metal bar placed in water, using the equation C = Eth/mT. The thermal energy gained by water was previously calculated as Eth = 11035.2 J, based on the mass of water (0.150 kg) and its specific heat (4180 J/kg°C). The problem involves determining the metal's shc after it is placed in water, which raises the water's temperature from 4.1 °C to 21.7 °C. The initial temperature of the metal is 96.2 °C, and the relevant equations are established for solving the problem.

PREREQUISITES
  • Understanding of specific heat capacity concepts
  • Familiarity with thermal energy calculations
  • Knowledge of temperature change equations
  • Basic algebra for solving equations
NEXT STEPS
  • Study the derivation of the specific heat capacity formula
  • Learn about heat transfer principles in thermodynamics
  • Explore examples of specific heat calculations with different materials
  • Investigate the effects of mass and temperature on thermal energy
USEFUL FOR

Students in physics or chemistry, educators teaching thermodynamics, and anyone involved in thermal energy calculations or material science.

lxhull
Messages
4
Reaction score
1
Homework Statement
A thermos bottle contains 0.150 kg of water at 4.1 °C. When 9.00 x 10^-2 kg of a metal, initially at 96.2 °C, is put into the water, the temperature of the water rises to 21.7 °C. Calculate the specific heat of the metal
Relevant Equations
C= Eth/mT
Previously solved thermal energy gained by water as
Eth= 0.15(4180)(17.6) = 11035.2 J
Not sure if its relevant
 
Physics news on Phys.org
lxhull said:
Not sure if its relevant
It is. How does it relate to the cooling of the metal?
 
haruspex said:
It is. How does it relate to the cooling of the metal?
That's the problem, I don't know. It seems like it can't be part of the equation for the metal's shc because it used the waters shc, so I can't figure it out.
 
lxhull said:
That's the problem, I don't know. It seems like it can't be part of the equation for the metal's shc because it used the waters shc, so I can't figure it out.
Just write the corresponding equation for the metal's change in temperature. Create an unknown for the metal's s.h.
 
lxhull said:
Homework Statement:: A thermos bottle contains 0.150 kg of water at 4.1 °C. When 9.00 x 10^-2 kg of a metal, initially at 96.2 °C, is put into the water, the temperature of the water rises to 21.7 °C. Calculate the specific heat of the metal
Relevant Equations:: C= Eth/mT

Previously solved thermal energy gained by water as
Eth= 0.15(4180)(17.6) = 11035.2 J
Not sure if its relevant
Corrrct so far.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K