Spherical Harmonics: Rigid Rotor, Laplace's Equation

Amok
Messages
254
Reaction score
1
So, I was reading about the quantum http://en.wikipedia.org/wiki/Rigid_rotor" and apparently its solutions are the so-called spherical harmonic functions, which are the solution to the angular portion of Laplace's equation. The way I see it, the rigid rotor Schroedinger equation is not the angular part of Laplace's equation (because of that E\Psipart of the rigid rotor equation). Am I right? Am I missing something? Am I completely wrong? Maybe these functions are solutions to both equations?



Homework Equations



\Delta\Psi=0 (Laplace's equation)

(-h-bar2/2\mu)\Delta\Psi=E\Psi

Homework Statement





Errrr... I'm have a hard time writing these equations here, it's just worth mentioning that it's not 2 to the power of mu, but 2 times mu.
 
Last edited by a moderator:
Physics news on Phys.org
If you actually solve the Laplace's equation you'll realize that the angular part is of the same form as the Shrödinger's equation. Start with the Laplace equation:

\nabla^2 \Psi = 0

Assume the solution is of the form \Psi(r,\theta,\phi) = R(r) Y(\theta,\phi) so that you can separate radius and angular dependence. You'll get:

\frac{1}{R}\nabla_r^2R + \frac{1}{Y}\nabla^2_\theta_, _\phi Y = 0

Now the first term only depends on r while the second term depends only on the angles which means that both must be constant (denote C) with opposite signs. That means that you can solve them separately and the angular part becomes

\nabla^2_\theta_, _\phi Y = CY

Which is of the same form as the Schrödinger equation.
 
It's been a while for me, so please correct me if I am wrong here.
If you want to solve an equation such as the second, it is common to divide the problem in finding a particular solution and the general solution to the homogeneous equation. In this case, the solutions to the homogeneous equation
-\frac{\hbar^2}{2\mu} \Delta\Psi = 0
are the spherical harmonic functions (or a multiple thereof) because the homogeneous equation simply is Laplace's equation. After you have found a particular solution \Psi_0 satisfying -\frac{\hbar^2}{2\mu} \Delta\Psi_0 = E \Psi_0 you can construct the general solution as the sum of this particular solution and the general solution, which is in turn a linear combination of spherical harmonics.

As for the equations, it would help if you all put it in just one pair of tags:
(-hbar^2 / 2\mu) \Delta\Psi = E \Psi
already looks much better (it'd be perfect if I'd written \hbar instead of hbar).
 
CompuChip said:
It's been a while for me, so please correct me if I am wrong here.
If you want to solve an equation such as the second, it is common to divide the problem in finding a particular solution and the general solution to the homogeneous equation. In this case, the solutions to the homogeneous equation
-\frac{\hbar^2}{2\mu} \Delta\Psi = 0
are the spherical harmonic functions (or a multiple thereof) because the homogeneous equation simply is Laplace's equation. After you have found a particular solution \Psi_0 satisfying -\frac{\hbar^2}{2\mu} \Delta\Psi_0 = E \Psi_0 you can construct the general solution as the sum of this particular solution and the general solution, which is in turn a linear combination of spherical harmonics.

As for the equations, it would help if you all put it in just one pair of tags:
(-hbar^2 / 2\mu) \Delta\Psi = E \Psi
already looks much better (it'd be perfect if I'd written \hbar instead of hbar).

I think the equation is homogenous anyway:(-hbar^2 / 2\mu) \Delta\Psi - E \Psi= 0
phsopher said:
\nabla^2_\theta_, _\phi Y = CY

Which is of the same form as the Schrödinger equation.

Ok, so C is a constant with respect to the radius (and everything else actually), which means I had forgotten this step in the separation of variables. Thanks a lot.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top