Stat Mech : Balls in a box counting problem

Opticmist
Messages
3
Reaction score
0

Homework Statement



I already have the solution to the problem. Just need some help deciphering the logic behind it.

There are V balls, which are identical except for their color. N of them are blue and V-N are red. We place the balls inside a box so that V/2 balls are on each side.

How many arrangements(states) accommodate a p number of blue balls on the left hand side of the box.


Homework Equations



---

The Attempt at a Solution



Actual Solution:

\Gamma = \frac{N!}{p! (N-P)!} (\frac{V}{2})^p (\frac{V}{2})^{N-p} (V-N)!

The explanation given for each term is as follows:

1) Pick p blue balls to occupy LHS
2) Spatially arrange p blue balls in LHS
3) Spatially arrange N-p blue balls on RHS
4) Spatially arrange all red balls inside the box.


Question:
I get the first three terms. I feel that the last term should not be there.

Since all red balls are identical, my feeling is that rearranging them in the remaining spots is not going to give any unique arrangements. Can someone please explain why the 4th term needs to be there?

Thanks!
 
Physics news on Phys.org
The balls apparently aren't indistinguishable. If they were, then the first factor shouldn't be there either because any selection of p blue balls out of N would be the same.
 
Makes perfect sense now. Thanks!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top