free
- 8
- 0
Homework Statement
A long, hollow, thick elastic cylinder (E , v) is surrounded by a thin elastic band of thickness t made of a different material (E_2 , v_2). The fit is ideal, such that neither a gap nor a pressure exists. An internal pressure p is then applied at the inside radius (r=a) of the thick cylinder. Assuming that the radial displacements is continuous at the interface (r=b), prove that the stress in the thick cylinder are given by
\sigma_{rr} = -p\frac{\beta(1+(b/r)^2)+(1-(1-((b/r)^2)}{\beta(1+(b/a)^2)+(1-((b/a)^2)}
where
\beta= \frac{(1-v^2)}{(1+v) v-(bE)(1-v_b^2)/(E_b h)}
Homework Equations
Lame's Equations. If a long cylinder is subject to internal pressure p_i at r_i and external pressure p_o at r_o then the radial stress distribution is
\sigma_{rr}=\frac{p_i r_i^2-p_o r_o^2}{r_o^2-r_i^2}+\frac{r_i^2 r_0^2(p_o-p_i)}{r^2(r_o^2-r_i^2)}
and the tangential stress distribution
\sigma_{tt}=\frac{p_i r_i^2-p_o r_o^2}{r_o^2-r_i^2}-\frac{r_i^2 r_0^2(p_o-p_i)}{r^2(r_o^2-r_i^2)}.
and finally the displacement is
u_r=\frac{1-v}{E}\frac{(p_i r_i^2 - p_o r_o^2)}{r_o^2-r_i^2} r + \frac{1+v}{E}\frac{r_i^2 r_o^2 (p_i-p_o)}{r_o^2-r_i^2}\frac{1}{r}.
The Attempt at a Solution
I attempted to match the displacements at the interface and solve for the interface pressure P. However, I can not get the correct solution with this approach.
The displacement of the inner cylinder at the interface is given by
u_r(r=b)=\frac{1-v}{E}\frac{(p_i a^2 - P b^2)}{b^2-a^2} b + \frac{1+v}{E}\frac{a^2 b^2 (p_i-P)}{b^2-a^2}\frac{1}{b}.
Canceling terms yields
u_r(r=b)=\frac{1}{E(b^2-a^2)}(2p_i a^2 b - (1-v)P b^3 - (1+v)P a^2 b)
The displacement at the interface of the outer cylinder is given by:
\sigma_\theta ≈ E \epsilon_\theta→ u(r=b) = \frac{Pb^2}{E_2 t}
because the outer elastic band is thin. Equating the displacements I get the interface pressure to
P = \frac{2 p_i a^2}{\frac{Eb(b^2-a^2)}{E_2 t}+(1-v)b^2+(1+b)a^2}.
I know this is the wrong interface pressure by check the solution given in the problem statement and through FEA analysis.