Sum of 5^1-5^2+5^3-5^4+...-5^{98}: e. (5/6)(1-5^98)

  • Thread starter Thread starter Biosyn
  • Start date Start date
  • Tags Tags
    Sequence Sum
Biosyn
Messages
114
Reaction score
0

Homework Statement



Find the sum of 5^1-5^2+5^3-5^4+...-5^{98}

a. (5/4)(1-5^99)
b. (1/6)(1-5^99)
c. (6/5)(1+5^98)
d. (1-5^100)
e. (5/6)(1-5^98)

Homework Equations


The Attempt at a Solution



I feel as though this is actually a simple problem and that I'm not looking at it the right way.

[5^1 + 5^3 + 5^5...5^{97}] + [-5^2-5^4-5^6...-5^{98}]
 
Last edited:
Physics news on Phys.org
Do you know how to sum ##x^n## in general? What is ##x## here?
 
jbunniii said:
Do you know how to sum ##x^n## in general? What is ##x## here?

##x## will be 5?

\sum_{i=0}^{48} (5^{2i + 1}) + \sum_{i=0}^{49} (5^{2i})Never mind, I figured it out!
 
Last edited:
Actually, it looks to me like
$$-\sum_{n=1}^{98}(-5)^n$$
 
jbunniii said:
Actually, it looks to me like
$$-\sum_{n=1}^{98}(-5)^n$$

I used Sn = \frac{a_1*(1-r^n)}{1-r}

Sn = \frac{5*(1-(-5)^98)}{1-(-5)}

= \frac{5*(1-(-5)^98)}{6}

= (5/6)*(1-(-5)^98)

Thanks for your help!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top