System of Masses - Atwood Machine

Click For Summary
SUMMARY

The discussion centers on the formulation of the Lagrangian for an Atwood machine system involving two masses (m1 and m2) and a mass (M) attached to a pulley. The Lagrangian is correctly defined as ℒ = T - U, where T is the kinetic energy and U is the potential energy. Key equations derived include ∂ℒ/∂l1 = (m1 - m2 - M)g and ∂ℒ/∂l2 = (m2 - M)g, leading to the acceleration equations ddot{l1} and ddot{l2}. The user identifies an interpretation error regarding the behavior of l2 as m1 approaches zero, concluding that both masses accelerate at -ddot{l1} = g.

PREREQUISITES
  • Understanding of Lagrangian mechanics
  • Familiarity with kinetic and potential energy concepts
  • Knowledge of differential equations
  • Basic principles of classical mechanics, particularly Newton's laws
NEXT STEPS
  • Study Lagrangian mechanics in-depth, focusing on systems with multiple degrees of freedom
  • Learn about the derivation and application of the Euler-Lagrange equations
  • Explore the implications of massless pulleys and inextensible ropes in mechanical systems
  • Investigate the behavior of systems under limit conditions, such as m1 → 0
USEFUL FOR

This discussion is beneficial for physics students, mechanical engineers, and anyone interested in classical mechanics and the analysis of dynamic systems using Lagrangian methods.

erobz
Gold Member
Messages
4,459
Reaction score
1,846
Misplaced Homework Thread, no template
1665430450002.png


Would anyone verify whether or not I've formulated the proper Lagrangian here for the system above (the pulleys are massless, inextensible ropes of length ##L## and ##S##):

$$\mathcal{L} = T - U $$

$$ \mathcal{L} = \frac{1}{2} m_1 { \dot l_1 }^2+ \frac{1}{2} m_2 \left( { \dot l_2}- {\dot l_1 } \right)^2 + \frac{1}{2} M \left( {\dot l_1}+ {\dot l_2} \right) ^2 + m_1 g l_1 + m_2 g ( L - l_1 + l_2) + M g ( L - l_1 + S - l_2 )$$

If I find out this step looks ok, I'll post the remainder. I'm getting some unexpected result at the end for ## \ddot{l_2}## when ##m_1 \to 0##, and I'm wondering if I'm making an algebra error in the middle, or I have made a mistake right from the get-go.

This is an extension of a recent HW problem that I proposed (and go figure... turns out I can't solve it myself). I figured I 'd start a new thread since this is a different method of analyzing it.

Thanks for any help.
 
Physics news on Phys.org
The Lagrangian looks good to me
 
Dale said:
The Lagrangian looks good to me
Thanks Dale! I'm going to piece this together so it's not too much to process. I'm a newbie to using this machinery.

Next step:

$$ \frac{ \partial \mathcal{L} }{ \partial l_1 } = ( m_1 - m_2 -M ) g $$

$$ \frac{ \partial \mathcal{L} }{ \partial l_2 } = ( m_2 -M ) g $$

$$ \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} } = m_1 \dot l_1 - m_2\left( \dot{l_2} - \dot{l_1} \right) + M \left( \dot{l_2} + \dot{l_1} \right) $$

$$ \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} } = m_2 \left( \dot{l_2} - \dot{l_1} \right) + M \left( \dot{l_1} + \dot{l_2} \right) $$
 
And:

$$ \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} } = \left ( m_1 + m_2+M \right) \ddot {l_1} + \left( M - m_2\right) \ddot {l_2} $$

$$ \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} } = \left( M - m_2 \right) \ddot{l_1} + \left( M+m_2 \right) \ddot{l_2}$$
 
Yes, I get the same
 
This is not someone’s physics homework, why did I get a warning?
 
You didn't get a point. I just moved it. Even though it isn't homework it is homework-like so it belongs here. I removed the points from the warning before moving it. It won't affect your membership at all
 
  • Like
Likes   Reactions: erobz
Are you going to solve the equations of motion or leave it at that?
 
kuruman said:
Are you going to solve the equations of motion or leave it at that?
I’m planning on it, but since all that appears correct I’m thinking I have an algebra error to find…
 
  • Like
Likes   Reactions: kuruman and Dale
  • #10
I just had a lightbulb moment. It took many times putting into practice Einstein's definition of insanity... I didn't have an algebra mistake, but rather an interpretation error.

$$ \frac{ \partial \mathcal{L} }{ \partial l_1 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} }$$

$$ ( m_1 - m_2 -M ) g = \left ( m_1 + m_2+M \right) \ddot {l_1} + \left( M - m_2\right) \ddot {l_2}$$

$$ \ddot{l_1} = \frac{(m_1 -m_2 -M)g - (M-m_2) \ddot{l_2}}{m_1 + m_2 + M} \tag{1}$$

$$ \frac{ \partial \mathcal{L} }{ \partial l_2 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} }$$

$$( m_2 -M ) g = \left( M - m_2 \right) \ddot{l_1} + \left( M+m_2 \right) \ddot{l_2} \tag{2}$$

Substitute ##(1) \to (2)##:

$$ \ddot{l_2} = \frac{ (m_1 + m_2 + M)( m_2 - M ) - ( M - m_2)(m_1 -m_2 -M) }{ ( m_1 + m_2 + M )(M+m_2) -(M-m_2)^2 } g \tag{3}$$

I had expected the masses to be in freefall if ##m_1 \to 0##, I reached the conclusion that ##m_1 \to 0, \ddot{l_2} = g ##. That conclusion was reached in error.

I had found what I was looking for, but I just hadn't realized it ( because I was thinking in terms of what I had done in the HW problem trying to use Newtons Laws )

Instead, I see that as ##m_1 \to 0, \ddot{l_2} \to 0 g ## meaning the length of the rope is not changing w.r.t. the pulley its attached to. They are both accelerating at ## - \ddot{l_1} = g## which is found by substituting ##m_1 = 0, \ddot{l_2} = 0## into ##(1)##.

Thats very good news! (I think?)

P.S. I realize ##(3)## simplifies greatly...I was getting tired.

$$\ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + 2 M m_2}g \tag{3}$$
 
Last edited:
  • Like
Likes   Reactions: Dale
  • #11
What is not so comforting about arriving at this solution is my failure in applying Newtons Laws to solve this problem as I have tried in

Problem with 2 pulleys and 3 masses

Can anyone figure out what is wrong about that approach?
 
Last edited:
  • #12
post 10 looks good too
 
  • #13
Dale said:
post 10 looks good too
I found an error in this one! That means the system is consistent

erobz said:
$$ \ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + 2 M m_2}g \tag{3}$$
$$ \ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + \boldsymbol{4} M m_2}g \tag{3}$$
 
  • #14
Thanks for all the verification along the way @Dale.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 9 ·
Replies
9
Views
715
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
26
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 8 ·
Replies
8
Views
7K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K