System of Masses - Atwood Machine

Click For Summary

Homework Help Overview

The discussion revolves around the formulation of the Lagrangian for an Atwood machine system involving multiple masses and pulleys. Participants are analyzing the dynamics of the system using Lagrangian mechanics, focusing on the relationships between the variables and the resulting equations of motion.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to verify their Lagrangian formulation and expresses concerns about unexpected results in their calculations. Other participants provide feedback on the correctness of the Lagrangian and engage in deriving equations related to the motion of the system. There are discussions about potential algebra errors and interpretation issues regarding the results.

Discussion Status

Participants have provided verification of the Lagrangian and engaged in deriving further equations. There is an ongoing exploration of the implications of the results, particularly concerning the behavior of the system as one mass approaches zero. Some participants have noted errors in previous calculations, indicating a productive direction in the discussion.

Contextual Notes

There is a mention of homework-like constraints, although the original poster clarifies that this is not a direct homework problem. The discussion includes references to previous problems and methods, indicating a continuity of thought and exploration in understanding the dynamics of the system.

erobz
Gold Member
Messages
4,459
Reaction score
1,846
Misplaced Homework Thread, no template
1665430450002.png


Would anyone verify whether or not I've formulated the proper Lagrangian here for the system above (the pulleys are massless, inextensible ropes of length ##L## and ##S##):

$$\mathcal{L} = T - U $$

$$ \mathcal{L} = \frac{1}{2} m_1 { \dot l_1 }^2+ \frac{1}{2} m_2 \left( { \dot l_2}- {\dot l_1 } \right)^2 + \frac{1}{2} M \left( {\dot l_1}+ {\dot l_2} \right) ^2 + m_1 g l_1 + m_2 g ( L - l_1 + l_2) + M g ( L - l_1 + S - l_2 )$$

If I find out this step looks ok, I'll post the remainder. I'm getting some unexpected result at the end for ## \ddot{l_2}## when ##m_1 \to 0##, and I'm wondering if I'm making an algebra error in the middle, or I have made a mistake right from the get-go.

This is an extension of a recent HW problem that I proposed (and go figure... turns out I can't solve it myself). I figured I 'd start a new thread since this is a different method of analyzing it.

Thanks for any help.
 
Physics news on Phys.org
The Lagrangian looks good to me
 
Dale said:
The Lagrangian looks good to me
Thanks Dale! I'm going to piece this together so it's not too much to process. I'm a newbie to using this machinery.

Next step:

$$ \frac{ \partial \mathcal{L} }{ \partial l_1 } = ( m_1 - m_2 -M ) g $$

$$ \frac{ \partial \mathcal{L} }{ \partial l_2 } = ( m_2 -M ) g $$

$$ \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} } = m_1 \dot l_1 - m_2\left( \dot{l_2} - \dot{l_1} \right) + M \left( \dot{l_2} + \dot{l_1} \right) $$

$$ \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} } = m_2 \left( \dot{l_2} - \dot{l_1} \right) + M \left( \dot{l_1} + \dot{l_2} \right) $$
 
And:

$$ \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} } = \left ( m_1 + m_2+M \right) \ddot {l_1} + \left( M - m_2\right) \ddot {l_2} $$

$$ \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} } = \left( M - m_2 \right) \ddot{l_1} + \left( M+m_2 \right) \ddot{l_2}$$
 
Yes, I get the same
 
This is not someone’s physics homework, why did I get a warning?
 
You didn't get a point. I just moved it. Even though it isn't homework it is homework-like so it belongs here. I removed the points from the warning before moving it. It won't affect your membership at all
 
  • Like
Likes   Reactions: erobz
Are you going to solve the equations of motion or leave it at that?
 
kuruman said:
Are you going to solve the equations of motion or leave it at that?
I’m planning on it, but since all that appears correct I’m thinking I have an algebra error to find…
 
  • Like
Likes   Reactions: kuruman and Dale
  • #10
I just had a lightbulb moment. It took many times putting into practice Einstein's definition of insanity... I didn't have an algebra mistake, but rather an interpretation error.

$$ \frac{ \partial \mathcal{L} }{ \partial l_1 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} }$$

$$ ( m_1 - m_2 -M ) g = \left ( m_1 + m_2+M \right) \ddot {l_1} + \left( M - m_2\right) \ddot {l_2}$$

$$ \ddot{l_1} = \frac{(m_1 -m_2 -M)g - (M-m_2) \ddot{l_2}}{m_1 + m_2 + M} \tag{1}$$

$$ \frac{ \partial \mathcal{L} }{ \partial l_2 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} }$$

$$( m_2 -M ) g = \left( M - m_2 \right) \ddot{l_1} + \left( M+m_2 \right) \ddot{l_2} \tag{2}$$

Substitute ##(1) \to (2)##:

$$ \ddot{l_2} = \frac{ (m_1 + m_2 + M)( m_2 - M ) - ( M - m_2)(m_1 -m_2 -M) }{ ( m_1 + m_2 + M )(M+m_2) -(M-m_2)^2 } g \tag{3}$$

I had expected the masses to be in freefall if ##m_1 \to 0##, I reached the conclusion that ##m_1 \to 0, \ddot{l_2} = g ##. That conclusion was reached in error.

I had found what I was looking for, but I just hadn't realized it ( because I was thinking in terms of what I had done in the HW problem trying to use Newtons Laws )

Instead, I see that as ##m_1 \to 0, \ddot{l_2} \to 0 g ## meaning the length of the rope is not changing w.r.t. the pulley its attached to. They are both accelerating at ## - \ddot{l_1} = g## which is found by substituting ##m_1 = 0, \ddot{l_2} = 0## into ##(1)##.

Thats very good news! (I think?)

P.S. I realize ##(3)## simplifies greatly...I was getting tired.

$$\ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + 2 M m_2}g \tag{3}$$
 
Last edited:
  • Like
Likes   Reactions: Dale
  • #11
What is not so comforting about arriving at this solution is my failure in applying Newtons Laws to solve this problem as I have tried in

Problem with 2 pulleys and 3 masses

Can anyone figure out what is wrong about that approach?
 
Last edited:
  • #12
post 10 looks good too
 
  • #13
Dale said:
post 10 looks good too
I found an error in this one! That means the system is consistent

erobz said:
$$ \ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + 2 M m_2}g \tag{3}$$
$$ \ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + \boldsymbol{4} M m_2}g \tag{3}$$
 
  • #14
Thanks for all the verification along the way @Dale.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
25
Views
3K
  • · Replies 9 ·
Replies
9
Views
846
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
26
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 8 ·
Replies
8
Views
7K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K