System of N classical anharmonic 3d oscillators

issler
Messages
1
Reaction score
0
1. Calculate the internal energy of a system of N classical anharmonic tridimensional oscillators of potential energy V(r) = k*(r^a) with k>0 a>0 and r = abs(r). Verify the result with a = 2 .
 
Physics news on Phys.org
Would be nice if you give a little more information like the thread at the beginning of these forums states. I would suggest reading that, coming back, and editing your post so I have more of an idea of what you want answered. For example...are you using the potential energy function

x(U) = \frac{1}{2\pi \sqrt{2m}} \int_0^U \frac{T(E)dE}{\sqrt{U-E}}?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top