Taylor Expansion of ln(cos(x))

dobry_den
Messages
113
Reaction score
0
\biggl(-\frac{x^2}2 + \frac{x^4}{24} - \frac{x^6}{720} +\mathcal{O}(x^8)\biggr)-\frac12\biggl(-\frac{x^2}2+\frac{x^4}{24}+\mathcal{O}(x^6)\biggr)^2+\frac13\biggl(-\frac{x^2}2+\mathcal{O}(x^4)\biggr)^3 + \mathcal{O}(x^8)\\ &amp; =-\frac{x^2}2 + \frac{x^4}{24}-\frac{x^6}{720} - \frac{x^4}8 + \frac{x^6}{48} - \frac{x^6}{24} +\mathcal{O}(x^8)\\<br />

(http://en.wikipedia.org/wiki/Taylor_series#First_example)

This is a Taylor expansion of f(x) = ln(cos(x)) . I just wonder what happened with the first three O's, especially with (O(x^6))^2 and (O(x^4))^3. Are they somehow incorporated in O(x^8)?
 
Physics news on Phys.org
Both of those go to \mathcal{O}(x^8) when you multiply out...
For example:
\left (- \frac{x^2}{2}+ \mathcal{O}(x^4}) \right)^3
multiplies out to:
-\frac {x^6}{8} + 3\frac{x^4}{4} \mathcal{O}(x^4) - 3\frac{x^2}{2} \mathcal{O}{x^8} + \mathcal{O}(x^12)
-\frac{x^6}{8} + \left( \mathcal{O}(x^8) - \mathcal{O}(x^{10}) + \mathcal{O}(x^{12}) \right)
-\frac{x^6}{8} + \mathcal{O}(x^8)
 
that's exactly what i don't get... shouldn't the result of

\mathcal{O}(x^8) - \mathcal{O}(x^{10}) + \mathcal{O}(x^{12}) \right)

be O(x^12) since that is the largest term?
 
Last edited:
dobry_den said:
that's exactly what i don't get... shouldn't the result of

\mathcal{O}(x^8) - \mathcal{O}(x^{10}) + \mathcal{O}(x^{12}) \right)

be O(x^12) since that is the largest term?

Doesn't that depend on x? (In Taylor expansions x is 'small', so lower exponents are more important.)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top