Techniques for Evaluating Momentum Space Integrals with Spherical Coordinates?

Nick Heller
Messages
4
Reaction score
0

Homework Statement


This integral has to do with the probability amplitude that a free particle at position x0 is found at x at some time t. With H = p2/(2m), this involves evaluating the integral
1/(2π)3∫d3p e-i(p2/(2m))t eip(x-x0)
The answer is
(m/(2πit))3/2e(im(x-x0)2)/(2t)

2. Homework Equations

H = p2/(2m)

The Attempt at a Solution


I am not sure how to work with d3p, since I don't know how to decompose it in terms of p besides dpxdpydpz. When I try to evaluate that integral Mathematica takes forever, so I'm not sure its the right approach. When I just use this instead and evaluate from -∞ to ∞ or 0 to ∞ I get e(im(x-x0)2)/(2t) times a factor that does not equal (m/(2πit))3/2 and with some combinations of erf functions which is a red flag. How do I evaluate this?
 
Last edited:
Physics news on Phys.org
Nick Heller said:
I get e(im(x-x0)2)/(2t) times a factor that does not equal (m/(2πit))
What does this factor look like before you try to evaluate it. Is it an integral of some sort?
 
Last edited:
The Gaussian integral is,
##\int_{-\infty}^\infty e^{-\alpha x^2}dx=\sqrt{\frac{ \pi} {\alpha}}##.
You can rewrite the exponential in the integral as:
## e^{(\frac {-it} {2m})(p_z^2 + p_y^2 + p_x^2 + \frac {(x-x_0)(2m)} {t} p_x) } = e^{\frac {im(x-x_0)^2} {2t}} e^{(\frac {-it} {2m}) (p_z^2 + p_y^2 +( p_x - \frac {(x-x_0)m} {t} )^2)} ##
The integral becomes:
##\frac {e^{\frac {im(x-x_0)^2} {2t}}} {(2\pi)^3} \int_{-\infty}^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty dp_x dp_y dp_z e^{(\frac {-it} {2m}) (p_z^2 + p_y^2 +( p_x - \frac {(x-x_0)m} {t} )^2)} ##
Making a change of variables in ## p_x## and using the Gaussian integral result for ## p_x, p_y, p_z## the answer follows.
 
Is there any techinques to evalute integrals like this, with respect to spherical coordinate??
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top