MHB Tensor Algebras - Cooperstein Example 10.1

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Tensor
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Bruce N. Coopersteins book: Advanced Linear Algebra (Second Edition) ... ...

I am focused on Section 10.3 The Tensor Algebra ... ...

I need help in order to get a basic understanding of Example 10.1 in Section 10.3 ...Example 10.1 plus some preliminary definitions reads as follows:View attachment 5552
View attachment 5553
View attachment 5554My questions related to Example 10.1 are articulated below ... ...
Question 1

In the above text from Cooperstein we read in Example 1, the following:" ... ... Then $$\mathcal{T}_k (V) = \{ cv \otimes \ ... \ ... \ \otimes v \ | \ c \in \mathbb{F} \}$$ ... ... "But ... $$\mathcal{T}_k (V)$$ is defined by

$$\mathcal{T}_k (V) = V \otimes V \otimes V \ ... \ ... \ \otimes V$$ ... ... ... (1)

( and there are $$k$$ $$V$$'s in the product ... )... surely then $$\mathcal{T}_k (V) = \{ v \otimes \ ... \ ... \ \otimes v \ | \ v \in V \} $$and not (as shown in Cooperstein Example 10.1 )

$$\mathcal{T}_k (V) = \{ cv \otimes \ ... \ ... \ \otimes v \ | \ c \in \mathbb{F} \} $$

... can someone please explain why $$\mathcal{T}_k (V)$$ has the form shown by Cooperstein in Example 10.1 ...Question 2

Can someone explain how/why the general element of degree 3 is as shown in Example 10.1 ...

Does it make sense to add these elements ... they seem different in nature and form ...Hope someone can help ...

Peter
 
Last edited:
Physics news on Phys.org
The direct sum of $\bigoplus\limits_i \mathcal{T}_i(V)$ is created just so we can "add tensors of differing rank".

Let's look at a typical element of $\mathcal{T}_3(V)$ where $V = Fv_0$:

It looks like $c_1v_0 \otimes c_2v_0 \otimes c_3v_0 = c_1c_2c_3 (v_0 \otimes v_0 \otimes v_0)$ by trilinearity.

So when $V$ is one-dimensional, the index basically just keeps track of "how many vectors we're tensoring", and the coefficients are derived from ordinary multiplication.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top