The concept of conservation of angular momentum

AI Thread Summary
Conservation of angular momentum is dependent on the choice of origin, requiring consistent reference points for comparison. The discussion highlights that in some scenarios, angular momentum is calculated relative to the center of mass, even when its position changes between states. This raises questions about the validity of such comparisons since the origin is not fixed. The mathematical justification for this approach lies in the invariance of translational motion within different coordinate systems. The implications of these principles at relativistic speeds remain uncertain and warrant further exploration.
assaftolko
Messages
171
Reaction score
0
I always read that conservation of angular momentum is with respect to an origin of our choice, so if we want to compare the angular momentum of two situations, we have to calculate the angular momentum in these situations with respect to the same origin. However - I've seen in some questions that there's conservation of angular momentum, but the calculation of it in each state is with respect to the center of mass. Now comes the twist - between these two states the center of mass itself has changed it's position in space (like with a rod that spins as it's making translation movement as well - in t=0 the rod can be at the left side of a room and in t=t' it can be at the right side of the room, it's clear that the center of mass of the rod is not at the same position in space).

I'd like to know what is the mathmatical justification for this comparison even though the origin between the two states is not at the same location
 
Physics news on Phys.org
Isn't is just a moving coordinate system with the origin being the center of mass so that the translational motion of the rod (or whatever) is invariant with respect to the coordinate system.

Maybe I don't completely understand completely because this makes sense to me in a classical limit but I'm not sure this holds true for relativistic speeds.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top